Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks

ID:40632448

大小:208.28 KB

页数:17页

时间:2019-08-05

Greedy Layer-Wise Training of Deep Networks_第1页
Greedy Layer-Wise Training of Deep Networks_第2页
Greedy Layer-Wise Training of Deep Networks_第3页
Greedy Layer-Wise Training of Deep Networks_第4页
Greedy Layer-Wise Training of Deep Networks_第5页
资源描述:

《Greedy Layer-Wise Training of Deep Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GreedyLayer-WiseTrainingofDeepNetworksYoshuaBengio,PascalLamblin,DanPopoviciandHugoLarochelleDept.IRO,UniversitedeMontrealP.O.Box6128,DowntownBranch,Montreal,H3C3J7,QC,Canadafbengioy,lamblinp,popovicd,larochehg@iro.umontreal.caTechnicalReport1282Departementd'InformatiqueetRechercheOpe

2、rationnelleAugust21st,2006AbstractDeepmulti-layerneuralnetworkshavemanylevelsofnon-linearities,whichallowsthemtopotentiallyrepresentverycompactlyhighlynon-linearandhighly-varyingfunctions.However,untilrecentlyitwasnotclearhowtotrainsuchdeepnetworks,sincegradient-basedoptimizationstartingf

3、romrandominitializationappearstooftengetstuckinpoorsolutions.Hintonetal.recentlyintroducedagreedylayer-wiseunsupervisedlearningalgorithmforDeepBeliefNetworks(DBN),agenerativemodelwithmanylayersofhiddencausalvariables.Inthecontextoftheaboveoptimizationproblem,westudythisalgorithmempiricall

4、yandexplorevariantstobetterunderstanditssuccessandextendittocaseswheretheinputsarecontinuousorwherethestructureoftheinputdistributionisnotrevealingenoughaboutthevariabletobepredictedinasupervisedtask.1IntroductionRecenttheoreticalanalyses(Bengio,Delalleau,&LeRoux,2006)ofmodernnon-parametr

5、icmachinelearningalgorithmsuchaskernelmachinesandgraph-basedmanifoldandsemi-supervisedlearningalgo-rithmssuggestfundamentallimitationsofsomelearningalgorithms.Theproblemisclearinkernel-basedapproacheswhenthekernelislocal"(e.g.theGaussiankernel),i.e.K(x;y)convergestoaconstantwhenjjxyjjin

6、creases.Theseanalysespointtothedicultyoflearninghighly-varyingfunctions",i.e.functionsthathavealargenumberofvariations"inthedomainofinterest,e.g.,theywouldrequirealargenumberofpiecestobewellrepresentedbyapiecewise-linearapproximation.Sincethenumberofpiecescanbemadetogrowexponentiallywi

7、ththenumberofinputvariables,thisproblemisdirectlyconnectedwiththewell-knowncurseofdimensionalityforclassicalnon-parametriclearningalgorithms(forregression,classi cationanddensityestimation).Iftheshapesofallthesepiecesareunrelated,oneneedsenoughexamplesforeachpiecein

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。