高二数学《直线的倾斜角和斜率》教学设计

高二数学《直线的倾斜角和斜率》教学设计

ID:38180468

大小:47.50 KB

页数:5页

时间:2019-06-06

高二数学《直线的倾斜角和斜率》教学设计_第1页
高二数学《直线的倾斜角和斜率》教学设计_第2页
高二数学《直线的倾斜角和斜率》教学设计_第3页
高二数学《直线的倾斜角和斜率》教学设计_第4页
高二数学《直线的倾斜角和斜率》教学设计_第5页
资源描述:

《高二数学《直线的倾斜角和斜率》教学设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、直线的倾斜角和斜率”教学设计教学过程设计(一)引言在平面几何里,我们直接依据图形中点、线、面的关系,研究图形的性质。现在我们采用另一种研究方法:坐标法。坐标法是在坐标系的基础上,把几何问题转化为代数问题,通过代数运算研究几何图形性质的一种方法。本章首先在平面直角坐标系中,给直线插上方程的“翅膀”,通过直线方程研究直线之间的位置关系:平行、垂直,以及两条直线的交点坐标,点到直线的距离等。解析几何是17世纪法国数学家笛卡尔和费马共同创立的。解析几何的创立是数学发展史上的一个重要的里程碑,数学从此由常量数学进入变量数学时期。解析几何由此成为近代数学的基础之一。本课时我们将研

2、究最基础的知识——直线的倾斜角和斜率,并在其学习过程中体会和感受解析几何研究问题的基本方法和思想。(设计意图:使学生了解学习的新内容的特点及意义。) (二)倾斜角概念的形成问题1 平面几何中,确定直线的条件是什么?对于平面直角坐标系内的一条直线l,它的位置由哪些条件确定呢?(设计意图:引导学生复习初中学过的相关知识,寻找本课时学习内容的固着点、生长点。)预设的回答:两点确定一条直线。启发引导:还有没有别的方法?能否利用给定的直角坐标系?在学生一定时间的思考后提出问题2在直角坐标系内任给一个点,过这个点的直线有无数条。再给一个什么条件就可以唯一确定一条直线呢?请动手操作

3、一下。预设的回答:可能会有“与x轴的交角”“与y轴的交角”等。启发性讲解:(借助于信息技术演示)可以发现,过一个点的直线有无数条,再借助坐标轴,给定直线与坐标轴的交角,那么直线就唯一确定了。一般的,我们以水平线x轴为基准,这也符合我们日常表示物体倾斜程度的习惯。因此我们约定图1中的角α表示直线的倾斜程度,把它叫做直线的倾斜角。由教师给出直线的倾斜角的定义,指出倾斜角的意义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angle of inclination).图2中直线l的倾斜角α为锐角,直线l’的倾斜角α’为钝

4、角。当直线与x轴平行或重合时,我们规定它的倾斜角为0o。(这个定义可否这样给出:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的最小正(这三个字是否添加要看必修教材教学的顺序,如果是12345的顺序,就不需要添加“正”字,如果是14523的顺序,则需要添加)角α叫做直线l的倾斜角(angle of inclination).当直线与x轴平行或重合时,我们规定它的倾斜角为0o,因此直线的倾斜角α的取值范围为0o≤α<180o.(这样做的原因是,定义简洁,自明,惟一,可以根据定义进行判断,而不需要用图形对定义进行补充说明。))追问:由定义,倾斜

5、角的范围是什么?(设计意图:在定义的形成过程中主要上针对个别条直线,研究的重点是定义的形成,通过这个问题引导学生研究所有直线与其倾斜角的关系,将定义具体化,全面化,同时得到倾斜角的意义。)预设的答案:倾斜角α的取值范围为0o≤α<180o。倾斜角的意义:平面内每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角步等。因此,直线的倾斜角表示平面内一条直线的倾斜程度。(三)斜率概念的形成问题3 日常生活中我们经常遇到上坡下坡之类的问题,你知道哪些表示倾斜程度的量吗?这些量与倾斜角有关系吗?(设计意图:了解学生的知识经验,并引导学

6、生建立坡度与倾斜角的关系。)(活动方式:先由学生在回忆的基础上做答,教师收集整理,挑选其中合理的成份。之后再在学生回答的基础上引导学生建立这个量与倾斜角之间的关系。)预设的复习答案:可以用坡度表示斜坡的倾斜程度,如图3,有坡度(比)=(此处可举具体的数字进行解释或复习)坡度与倾斜角的关系预设的答案:如图3所示是斜坡的主视图,可见,斜坡可以抽象为一条直线,它关于水平面的倾斜角记为α,那么这里的坡度(比)实际就是“倾斜角α的正切值”。小结讲授:把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope)。斜率常用小写字母k表示,即k=tanα。问题4 如图2,直线l的倾斜

7、角α=45o,直线l’的倾斜角α’=135o,写出两条直线的斜率。再选取一些数据如倾斜角为:30o,150o,60o,120o等,计算相应直线的斜率。并分析直线的倾斜角不同时,直线的斜率取值是否也不同,在此基础上总结斜率的意义。(提示:当α为锐角时,tan(180o-α)=-tanα。)(设计意图:引导学生通过有代表性的具体实例的分析,利用“提示”中的知识,结合初中学过的正切值,了解斜率取值的特点,渗透分类讨论点思想总结出斜率的意义。此处也可以多增加一些角,用计算器计算)(活动方式:由学生独立完成,教师在方法上予以指导——分类讨论法,并类比倾斜角的意

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。