直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计

ID:5932760

大小:397.50 KB

页数:7页

时间:2017-12-29

直线的倾斜角和斜率教学设计_第1页
直线的倾斜角和斜率教学设计_第2页
直线的倾斜角和斜率教学设计_第3页
直线的倾斜角和斜率教学设计_第4页
直线的倾斜角和斜率教学设计_第5页
资源描述:

《直线的倾斜角和斜率教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§3.1.1直线的倾斜角和斜率一、教材分析本课是解析几何第一课时。“万事开头难”,“好的开始是成功的一半”,解析几何的基本思想和方法都应当得到适当的体现,因此教学内容不仅有倾斜角、斜率的概念,还应当包含坐标法、数形结合思想、解析几何发展史等。直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。本课涉及两个概念——倾斜角和斜率。倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽

2、带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的条件最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。综上,从解析几何的基本方法——坐标法的基本思想考虑,斜率概念是本课时的核心概念。(一)直线的斜率在高中数学课程中的地位作用   随着后续内容的学习,我们逐渐发现,一点和倾斜程度确定直线的很多应用:直线的方向向量、直线的参数方程等等。另外,从加强知识内容的联系性,从不同角度看待同一数学内容的角度

3、看,如果把函数看作描述客观世界变化规律的数学模型,那么从变化的角度看,直线是线性的,它描述的是均匀变化,是最简单的变化之一。即直线在某个区间上的平均变化率,与直线上任意一点的瞬时变化率(导数)是相同的,都等于这条直线的斜率。一切不均匀的变化或者非线性的变化,在某个很小的区间(领域)内都可以由线性的、均匀的变化近似代替。这也是为什么用线性的研究非线性的,以直代曲,用平均变化率研究瞬时变化率(导数)的原因。在这种研究方法中,直线的斜率起着枢纽作用,此处不赘述。因此,直线的斜率是重要的概念之一,在高中数学课程中具有重要的地位作用。(二)课时划分“§3.1.1直线的倾斜角和斜

4、率”的教学在在新课标中加上引言为一个课时完成。二、学情和教学设计分析(一)学情分析已知1、了解点与坐标的关系,实现了最简单的形与数的转化;2、了解刻画楼梯的倾斜程度可以用角和;3、学生具备了一定的数形结合和分类讨论的思想;未知1、楼梯表面抽象成的直线倾斜程度刻画的推广;2、为什么有了倾斜角,还要引入斜率来描述直线的倾斜程度呢?“角”是形,“率”是数,它们的关系如何?第7页共7页3、两点确定一条直线,一个定点和一个倾斜角(斜率)也能确定同一条直线,两个几何问题的联系是什么?(二)教学设计分析1.倾斜角和斜率是在直角坐标系中研究直线时所产生的概念.学生通过直角坐标系已经研

5、究过函数及其图象,具有了数形结合的初步意识,但这是“将代数问题几何化”,对直角坐标系的认识还比较肤浅、片面.作为解析几何的起始课,教学中有必要通过活动,加深学生对直角坐标系的认识,突出“几何问题代数化”的思想。2.斜率是本课的核心概念,因为它既从代数角度刻画了倾斜程度,同时也是建立直线方程的基础。对于引进斜率的合理性和必要性的认识是本课教学的难点。(1)斜率为什么也能表示直线的倾斜程度。关键是让学生认识到斜率与倾斜角的对应关系。倾斜角与斜率的关系中有几个难点:一是所有的直线都有倾斜角,但并不是所有直线都有斜率;二是并非倾斜角越大,斜率也越大。产生这两个难点的原因在于:

6、一是学生缺乏对倾斜角范围的认识,二是分类讨论的思想意识淡薄,三是由式子k=tana联系到函数及其图象的能力不足。因此教学中有必要分步设置台阶,通过问题让学生思考讨论,以突破难点。但考虑到课时的限制,为突出主题,需避免过分展开。(2)为什么有了倾斜角,还要引入斜率来描述直线的倾斜程度呢?要认识这一点,需要从代数的角度多方面分析,如斜率公式反映出斜率在联系两点的坐标与直线倾斜角的优越性,斜率在研究直线平行与垂直上的作用,直线的代数表示y=kx+b中k的几何意义等。但一节课是难以面面俱到的,需要今后在学习中螺旋上升,分步达成。为了使课堂教学体现准、精、简的特点,可作如下处理

7、:以生活中坡角和坡度作类比,引出斜率概念,使学生体会可以从不同侧面描述倾斜程度,“角”是形,“率”是数。引导学生思考:在直角坐标系下,两点定,直线定;直线定,倾斜程度定;那么给定两点坐标,如何才能求出描述直线的倾斜角和斜率呢? 学生在自主探究的过程中体会斜率是直线倾斜程度的代数化表示,通过斜率的运算,可以研究直线的几何性质。最后通过例题从不同的侧面体现斜率在沟通数与形上的作用。三、教学目标:1.结合实际倾斜程度情景(两个不同楼梯)引出表示倾斜程度的两个量:“角”和“斜率”,从而引出直线的倾斜角和斜率的定义。2.理解直线的倾斜角和斜率的概念,经历用代数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。