19.1.2 第2课时 函数的表示法

19.1.2 第2课时 函数的表示法

ID:36307495

大小:1.05 MB

页数:24页

时间:2019-05-09

19.1.2 第2课时 函数的表示法_第1页
19.1.2 第2课时 函数的表示法_第2页
19.1.2 第2课时 函数的表示法_第3页
19.1.2 第2课时 函数的表示法_第4页
19.1.2 第2课时 函数的表示法_第5页
资源描述:

《19.1.2 第2课时 函数的表示法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、优翼课件导入新课讲授新课当堂练习课堂小结学练优八年级数学下(RJ)教学课件19.1.2函数的图象第十九章一次函数第2课时函数的表示方法情境引入学习目标1.了解函数的三种表示方法及其优点;2.能用适当的方式表示简单实际问题中的变量之间的函数关系;(重点)3.能对函数关系进行分析,对变量的变化情况进行初步讨论.(难点)在计算器上按照下面的程序进行操作:输入x(任意一个数)按键×2=显示y(计算结果)x13-40101y711-35207显示的数y是输入的数x的函数吗?为什么?填表:+5如果是,写出它的解析式.y=2x+5导入新课动手操作讲授新课函数的三种

2、表示方法用平面直角坐标系中的一个图象来表示的.问题1.下图是某地气象站用自动温度记录仪描出的某一天的温度曲线,气温T是不是时间t的函数?这里是怎样表示气温T与时间t之间的函数关系的?是合作探究问题2.正方形的面积S与边长x的取值如下表,面积S是不是边长x的函数?这里是怎样表示正方形面积S与边长x之间的函数关系的?列表格来表示的.14916253649是问题3.某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为y=2.88x.y是不是x的函数?这里是怎样表示缴纳的天然气费y与所用天然气的体积x的函数关系的?用函数解析

3、式y=2.88x来表示.是函数的三种表示法:y=2.88x图象法、列表法、解析式法.14916253649知识要点1.解析式法:准确地反映了函数与自变量之间的数量关系.2.列表法:具体地反映了函数与自变量的数值对应关系.3.图象法:直观地反映了函数随自变量的变化而变化的规律.议一议这三种表示函数的方法各有什么优点?例1.如图,要做一个面积为12m2的小花坛,该花坛的一边长为xm,周长为ym.(1)变量y是变量x的函数吗?如果是,写出自变量的取值范围;(2)能求出这个问题的函数解析式吗?x解:(1)y是x的函数,自变量x的取值范围是x>0.(2)y=2

4、(x+)典例精析(3)当x的值分别为1,2,3,4,5,6时,请列表表示变量之间的对应关系;(4)能画出函数的图象吗?x/m123456y/m2616141414.816403530252015105510Oxy(3)已知等腰三角形的面积为30cm2,设它的底边长为xcm,底边上的高为ycm(1)求底边上的高y随底边长x变化的函数解析式.并求自变量的取值范围.(2)当底边长为10cm时,底边上的高是多少cm?解:x>0(2)当x=10时,y=60÷10=6xy60=(1)做一做例2.一水库的水位在最近5h内持续上涨,下表记录了这5h内6个时间点的水位

5、高度,其中t表示时间,y表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律?t/h012345y/m33.33.63.94.24.5x/hy/mO123456781234解:可以看出,这6个点,且每小时水位.由此猜想,在这个时间段中水位可能是以同一速度均匀上升的.在同一直线上上升0.3m5(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出函数图象.这个函数能表示水位的变化规律吗?(2)由于水位在最近5小时内持续上涨,对于时间t的每一个确定的值,水位高度y

6、都有的值与其对应,所以,yt的函数.函数解析式为:.自变量的取值范围是:.它表示在这小时内,水位匀速上升的速度为,这个函数可以近似地表示水位的变化规律.唯一是y=0.3t+30≤t≤550.3m/h(3)据估计这种上涨规律还会持续2h,预测再过2h水位高度将达到多少m.(3)如果水位的变化规律不变,按上述函数预测,再持续2小时,水位的高度:.此时函数图象(线段AB)向延伸到对应的位置,这时水位高度约为m.5.1m右5.1已知火车站托运行李的费用C(元)和托运行李的重量P(千克)(P为整数)的对应关系如表:做一做P12345…C22.533.54…(1

7、)已知小周的所要托运的行李重12千克,请问小周托运行李的费用为多少元?(2)写出C与P之间的函数解析式.(3)小李托运行李花了15元钱,请问小李的行李重多少千克?7.5元C=0.5P+1.527千克1.小明所在学校与家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图,能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系图象的是()当堂练习D2.某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030

8、y(单位:万元/台)605550C则y与x之间的解析式是()A.y=80-2xB.y=40+2xC.y=65

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。