3.3导数的应用(1)

3.3导数的应用(1)

ID:36212778

大小:1.07 MB

页数:25页

时间:2019-05-07

3.3导数的应用(1)_第1页
3.3导数的应用(1)_第2页
3.3导数的应用(1)_第3页
3.3导数的应用(1)_第4页
3.3导数的应用(1)_第5页
资源描述:

《3.3导数的应用(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.3导数的应用(1)1.掌握导数与函数单调性之间的关系,会利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).3.能够区分极值与最值两个不同的概念.4.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).一、课标要求1.函数的单调性与导数[探究]1.若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f′(x)≥0,f′(x)>0是

2、f(x)在(a,b)内单调递增的充分不必要条件.2.函数的极值与导数(1)函数的极小值:若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值,且f′(a)=0,而且在点x=a附近的左侧,右侧,则a点叫做函数的极小值点,f(a)叫做函数的极小值.都小f′(x)<0f′(x)>0(2)函数的极大值:若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值,且f′(b)=0,而且在点x=b附近的左侧,右侧,则b点叫做函数的极大值点,f(b)叫做函数的极大值,和统称为极值.[探究]2.导数值为0的点一定是函数的极值点吗?导数为零是函数在该点取得极值

3、的什么条件?提示:不一定.可导函数的极值点导数为零,但导数为零的点未必是极值点;如函数f(x)=x3,在x=0处,有f′(0)=0,但x=0不是函数f(x)=x3的极值点;其为函数在该点取得极值的必要而不充分条件.都大f′(x)>0f′(x)<0极大值极小值3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件:一般地,如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在[a,b]上的最大值与最小值的步骤为①求函数y=f(x)在(a,b)内的;②将函数y=f(x)的各极值与的函数值f(a),f(b)比较,其中最

4、大的一个是最大值,最小的一个是最小值.极值端点处[探究]3.函数的极值和函数的最值有什么联系和区别?提示:极值是局部概念,指某一点附近函数值的比较,因此,函数在极大(小)值,可以比极小(大)值小(大);最值是整体概念,最大、最小值是指闭区间[a,b]上所有函数值的比较.因而在一般情况下,两者是有区别的,极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但如果连续函数在区间(a,b)内只有一个极值,那么极大值就是最大值,极小值就是最小值.D1.导数法求函数单调区间的一般步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′

5、(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间.2.导数法证明函数f(x)在(a,b)内的单调性的步骤:(1)求f′(x);(2)确认f′(x)在(a,b)内的符号;.(3)作出结论:f′(x)>0时为增函数;f′(x)<0时为减函数.3.导数法求参数的取值范围已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b),转化为不等式恒成立求解.x-1(-1,+∞)f′(x)+0-0+f(x)极大值极小值x(-∞,-1)-1f′(x)+0-0+f(x)极大值极小值课后作业1.预习3.42.《乐学》3.33.错题整

6、理

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。