资源描述:
《2.2.2_双曲线的简单几何性质(1-3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2双曲线简单的几何性质(1)定义图象方程焦点a.b.c的关系
2、
3、MF1
4、-
5、MF2
6、
7、=2a(2a<
8、F1F2
9、)F(±c,0)F(0,±c)2、对称性一、研究双曲线的简单几何性质1、范围关于x轴、y轴和原点都是对称的.x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-bb-aa如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长(2)实轴与虚轴等长的双
10、曲线叫等轴双曲线(3)只有两个!M(x,y)4、渐近线N(x,y’)Q慢慢靠近xyoab(1)(2)利用渐近线可以较准确的画出双曲线的草图(3)动画演示离心率。c>a>0e>1e是表示双曲线开口大小的一个量,e越大开口越大!(1)定义:(2)e的范围:(3)e的含义:5、离心率(4)等轴双曲线的离心率e=?(5)焦点在x轴上的双曲线的几何性质双曲线标准方程:1、范围:x≥a或x≤-a2、对称性:关于x轴,y轴,原点对称。3、顶点:A1(-a,0),A2(a,0)4、轴:实轴A1A2虚轴B1B25、渐近线方程:6、离心率:e=xyo-aab-b(1)范围:(
11、2)对称性:关于x轴、y轴、原点都对称(3)顶点:(0,-a)、(0,a)(4)渐近线:(5)离心率:焦点在y轴上的双曲线的几何性质关于x轴、y轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐进线..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)例1、求下列双曲线的渐近线方程(1)4x2-9y2=36,(2)25x2-4y2=100.2x±3y=05x±2y=0例2:求双曲线的实半轴长,虚半轴长,焦
12、点坐标,离心率.渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922=-xy1342222=-xy53422=+45==ace例3:1、若双曲线的渐近线方程为则双曲线的离心率为。2、若双曲线的离心率为2,则两条渐近线的夹角为。3、求中心在原点,对称轴为坐标轴,经过点P(1,-3)且离心率为的双曲线标准方程.例4:求下列双曲线的标准方程:例4:求下列双曲线的标准方程共准线的双曲线方程:法二:巧设方程,运用待定系数法.⑴设双曲线方程为,例4:求下列双曲线的标准方程例
13、4:求下列双曲线的标准方程例4:求下列双曲线的标准方程结论:与双曲线有共同焦点的双曲线方程表示为法二:设双曲线方程为∴双曲线方程为∴,解之得k=4,1、“共渐近线”的双曲线λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为(2)与双曲线有共同焦点的双曲线方程表示为总结:2、求与椭圆有共同焦点,渐近线方程为的双曲线方程。解:椭圆的焦点在x轴上,且坐标为双曲线的渐近线方程为解出2.2.2双曲线简单的几何性质(2)关于x轴、y轴、原点对称图形方程范围对称性顶点离心率yxOA2B2A1B1
14、..F1F2yB2A1A2B1xO..F2F1A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于x轴、y轴、原点对称A1(-a,0),A2(a,0)渐进线无关于x轴、y轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐进线..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)1、“共渐近线”的双曲线λ>0表示焦点在x轴上的双曲线
15、;λ<0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为(2)与双曲线有共同焦点的双曲线方程表示为xyOlF引例:点M(x,y)与定点F(c,0)的距离和它到定直线的距离比是常数(c>a>0),求点M的轨迹.M解:设点M(x,y)到l的距离为d,则即化简得(c2-a2)x2-a2y2=a2(c2-a2)设c2-a2=b2,(a>0,b>0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.b2x2-a2y2=a2b2即就可化为:M点M的轨迹也包括双曲线的左支.一、双曲线的第二定义一、双曲线的第二定义平面内,若定点F
16、不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e>