2018年秋高中数学课时分层作业6组合的综合应用新人教a版

2018年秋高中数学课时分层作业6组合的综合应用新人教a版

ID:35799031

大小:30.49 KB

页数:4页

时间:2019-04-18

2018年秋高中数学课时分层作业6组合的综合应用新人教a版_第1页
2018年秋高中数学课时分层作业6组合的综合应用新人教a版_第2页
2018年秋高中数学课时分层作业6组合的综合应用新人教a版_第3页
2018年秋高中数学课时分层作业6组合的综合应用新人教a版_第4页
资源描述:

《2018年秋高中数学课时分层作业6组合的综合应用新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时分层作业(六)组合的综合应用(建议用时:40分钟)[基础达标练]一、选择题1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )A.60种       B.70种C.75种D.150种C [从6名男医生中选出2名有C种选法,从5名女医生中选出1名有C种选法,由分步乘法计数原理得不同的选法共有C·C=75种,故选C.]2.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为(  )【导学号:95032066】A.720B.360C.

2、240D.120D [确定三角形的个数为C=120.]3.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这2个球同色的不同取法有(  )A.27种B.24种C.21种D.18种C [分两类:一类是2个白球有C=15种取法,另一类是2个黑球有C=6种取法,所以共有15+6=21种取法.]4.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有(  )A.56种B.68种C.74种D.92种D

3、 [根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有CC种,有一个“多面手”的选派方法有CCC种,有两个“多面手”的选派方法有CC种,既共有20+60+12=92种不同的选派方法.]5.将5名实习教师分配到高一年级的3个班实习,每班至少1人,最多2人,则不同的分配方案有(  )【导学号:95032067】A.30种B.90种C.180种D.270种B [先将5名教师分成3组,有=15种分法,再将3组分配到3个不同班级有A=6种分法,故共有15×6=90种方案.]二、填空题

4、6.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有________种.24 [依题意,满足题意的选法共有C×2×2=24种.]7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有________种.18 [因为先从3个信封中选一个放标号为1,2的卡片,有3种不同的选法,再从剩下的4个标号的卡片中选两个放入一个信封有C=6种,余下的放入最后一个信封,所以共有3C=18(种).]8.将标号为

5、1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有________种.(以数字作答)【导学号:95032068】240 [从10个球中任取3个,有C种方法.取出的3个球与其所在盒子的标号不一致的方法有2种.∴共有2C种方法.即240种.]三、解答题9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;

6、(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.[解] (1)C=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C=36种不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有C=3种选法,再从另外的9人中选4人有C种选法,共有CC=378种不同的选法.(5)法一:(直接法)可分为三类:第一类,甲、乙、丙中

7、有1人参加,共有CC种不同的选法;第二类,甲、乙、丙中有2人参加,共有CC种不同的选法;第三类,甲、乙、丙3人均参加,共有CC种不同的选法;共有CC+CC+CC=666种不同的选法.法二:(间接法)12人中任意选5人共有C种,甲、乙、丙三人不能参加的有C种,所以共有C-C=666种不同的选法.10.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?【导学号:95032069】[解] (1)44=256(种).(2)恰有2个盒子不放球,也就是把

8、4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C种,再放到2个小盒中有A种放法,共有CA种方法;第二类,2个盒子中各放2个小球有CC种放法,故恰有2个盒子不放球的方法共有CA+CC=84种放法.[能力提升练]一、选择题1.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且2个公益广告不能连续播放,则不同的播放方式有(  )A.120种   

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。