欢迎来到天天文库
浏览记录
ID:35203941
大小:323.50 KB
页数:36页
时间:2019-03-21
《“哥德巴赫猜想”简捷证明(王愚公9)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、“哥德巴赫猜想”简捷证明贵州省务川自治县实验学校王若仲(王洪)摘要:我闲遐之余,喜好研究数学问题,我在一次偶然探究中,发现了“哥德巴赫猜想”的简捷证明方法,即就是不具体研究单个素数的位置如何,也不研究设定区域内素数的数量如何,而是利用集合的概念,设置一定的条件,在宽泛的前提下探讨整体情形,即假设偶数6,8,10,…,(2m-2),(2m)(m≧3);它们均可表为两个奇素数之和。设奇合数a1,a2,a3,…,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、…、t),t∈N。则集合{1,(2m-
2、1)}∪{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{a1,a2,a3,…,at}有缺项。利用前面已知条件,证明集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1+2),(a2+2),(a3+2),…,(at+2)}有缺项;利用此结论,证明集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1-2),(a2-2),(a3-2),…,(at-2)}也有缺项;假设偶数(2m+2)不能表为两个奇素数之和,设奇合数a1,a2,a3,…,a
3、r均为不大于偶数(2m+2)的全体奇合数,(ai<aj,i<j,i、j=1、2、3、…、r),r∈N。则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),…,(2m+2-at)}∪{a1,a2,a3,…,ar}没有缺项。该集合中的元素均分别减去2后所得集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1-2),(a2-2),(a3-2),…,(at-2)}仍然没有缺项。这与前面所得结论产生矛盾,说明偶数(2m+2)能表为两个奇素数之和。由此得出“哥
4、德巴赫猜想”成立。关键词:哥德巴赫猜想;素数;缺项集合引言德国数学家哥德巴赫,他在1742年提出:任一不小于6的偶数均可表为两个奇素数之和,这就是著名的哥德巴赫猜想问题,至今没有完全解决。我在遵义师范高等专科学校求学时,就对哥德巴赫猜想问题产生了兴趣,进行过肤浅的探索。特别是我在1993年的一次偶然的数字游戏演算中,发现了一个特别有趣的现象,通过归纳提炼,得出如下问题,即对于任一集合A,A={a1、a2、a3、…、an},ai5、M,M均可表为集合A中的两个奇素数之和,m∈N,m≧4。则集合{(2m-a1)、(2m-a2)、(2m-a3)、…、(2m-an)}中至少有一个奇素数。从此就走上了业余研究“哥德巴赫猜想”之路。我们知道,只能被1和本身整除的正整数,称为素数。定义1:对于均满足某一特性或某一表达式的全体整数组成的集合A,关于集合A的子集A1,A2,A3,…,Ak;任一子集Ai≠A(i=1,2,3,…,k),则称集合Ai为该条件下的缺项集合。缺具体的某一项,该项则称为缺项。36定理1:对于整数集合A={a1,a2,a3,…,ak,…},任一6、ai∈N(i=1,2,3,…,k,…);a1,a2,a3,…,ak,…为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,…,a1h},C={a21,a22,a23,…,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪C在集合A的条件下没有缺项,则集合{(a11±md),(a12±md),(a13±md),…,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),…,(a2t±md)}在集合A的条件下仍然没有缺项,m∈N。证明:对于整数集合A={a1,7、a2,a3,…,ak,…},任一ai∈N(i=1,2,3,…,k,…);a1,a2,a3,…,ak,…为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,…,a1h},C={a21,a22,a23,…,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下没有缺项,不妨设集合B∪C={b1,b2,b3,…,bt},则集合{b1,b2,b3,…,bt}={r,(d+r),(2d+r),(3d+r),…,[(e-1)d+r],(ed+r)},e∈N。而集合{(b18、-md),(b2-md),(b3-md),…,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),…,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),…,(bt+md)}={(r+md),(d+r+md),(2d+r+md
5、M,M均可表为集合A中的两个奇素数之和,m∈N,m≧4。则集合{(2m-a1)、(2m-a2)、(2m-a3)、…、(2m-an)}中至少有一个奇素数。从此就走上了业余研究“哥德巴赫猜想”之路。我们知道,只能被1和本身整除的正整数,称为素数。定义1:对于均满足某一特性或某一表达式的全体整数组成的集合A,关于集合A的子集A1,A2,A3,…,Ak;任一子集Ai≠A(i=1,2,3,…,k),则称集合Ai为该条件下的缺项集合。缺具体的某一项,该项则称为缺项。36定理1:对于整数集合A={a1,a2,a3,…,ak,…},任一
6、ai∈N(i=1,2,3,…,k,…);a1,a2,a3,…,ak,…为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,…,a1h},C={a21,a22,a23,…,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪C在集合A的条件下没有缺项,则集合{(a11±md),(a12±md),(a13±md),…,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),…,(a2t±md)}在集合A的条件下仍然没有缺项,m∈N。证明:对于整数集合A={a1,
7、a2,a3,…,ak,…},任一ai∈N(i=1,2,3,…,k,…);a1,a2,a3,…,ak,…为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,…,a1h},C={a21,a22,a23,…,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下没有缺项,不妨设集合B∪C={b1,b2,b3,…,bt},则集合{b1,b2,b3,…,bt}={r,(d+r),(2d+r),(3d+r),…,[(e-1)d+r],(ed+r)},e∈N。而集合{(b1
8、-md),(b2-md),(b3-md),…,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),…,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),…,(bt+md)}={(r+md),(d+r+md),(2d+r+md
此文档下载收益归作者所有