欢迎来到天天文库
浏览记录
ID:35141334
大小:134.00 KB
页数:3页
时间:2019-03-20
《三、分组分解法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、三、分组分解法.(一)分组后能直接提公因式例1、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式==每组之间还有公因式!=例2、分解因式:解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。第二、三项为一组。解:原式=原式=====(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继
2、续分解,所以只能另外分组。解:原式===例4、分解因式:解:原式===四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——进行分解。特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。例.已知0<≤5,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项式ax2+bx+c,都要求>0而且是一个完全平方数。于是为完全平方数,例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2
3、×3的分解适合,即2+3=5。12解:=13=1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:解:原式=1-1=1-6(-1)+(-6)=-7(二)二次项系数不为1的二次三项式——条件:(1)(2)(3)分解结果:=例7、分解因式:分析:1-23-5(-6)+(-5)=-11解:=(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。18b1-16b8b+(-16b)=-8b解:==(四)二次项系数不为1
4、的齐次多项式例9、例10、1-2y把看作一个整体1-12-3y1-2(-3y)+(-4y)=-7y(-1)+(-2)=-3解:原式=解:原式=
此文档下载收益归作者所有