资源描述:
《半非紧测度与集值am映象(英文)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、mappings,J.ofMath.Res.andExposition,4(1992),487-492.半非紧测度与集值AM映象孙 大 清(贵州大学数学系,贵阳550025)摘要本文以半非紧测度为工具研究一类非线性集值映象的性质,然后把所得结果用于证明微分包含的解的存在性.—170—©1995-2005TsinghuaTongfangOpticalDiscCo.,Ltd.Allrightsreserved.JournalofMathematicalResearch&ExpositionVol.1
2、7,No.2,165-170,May1997MeasuresofSemi-NoncompactnessandSet-ValuedXAM-MappingsSunDaqing(Dept.ofMath.,GuizhouUniversity,Guiyang550025)AbstractInthispaperwedefinemeasuresofsemi2noncompactnessinalocallyconvextopologicallinearspacewithrespecttoagivensemino
3、rm.Thenwegetafixedpointthe2oremforaclassofcondensingset2valuedmappingsandapplyittodifferentialinclu2sions.Keywordsorderedtopologicallinearspace,almostorder2boundedsetdifferentialinclu2sion.ClassificationAMS(1991)46A,47HöCCLO177.1Recently,manypapersar
4、econcernedwithexistencesoffixedpointsforset2valuedcontrac2tionmappings,see,e.g.,[9]andreferencetherein.Inthispaper,motivatiedbytheideasof[7].weintroduceanotionofmeasureofsemi2noncompactnessforsubsetsofatopologicalvectorlatticewhichnotonlyreducestotha
5、tgivenin[7]forthenormtopologyonaBanachlattice,butwhichappliesequallytotheweaktopologyinawideclassofBanachlattices.Theseideasleadnaturallytoconsideringaclassofset2valuedmappingswhichwecallset2valuedAM2mappingsandforwhichweproveafixedpointtheorem(Theor
6、em3).Let(E,S)bearealandlocallyconvextopologicallinearspace.WeassumethatthereisanorderrelationFinE,whichmakesEavectorlattiec.Forx∈E.Let+-+-x=x∨0,x=(-x)∨0,ûxû=x+x,E+={x∈EûxE0}.WeassumethatthetopologySandthepartialorderFsatisfythefollowingcondition(H):(
7、H)Letx∈E.If{xn}8、hatthepositiveconeE+isS2closedinE.WeremarkthatifEisaBanachlatticeandifSisthenormtopologyonE,thencondition(H)isclearlysatis2fiedsincethelatticeoperationsarecontinuousforthenormtopology.IfSistheweaktopologyonaBanachlatticethenthesituationissomewhatdiff