资源描述:
《复变函数讲义3new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13Ù)Û¼êÈ©L«3.1EC¼êÈ©¥‰ŒêÆÆ2013c93.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c91/12EC¼êÈ©½ÂDenitionC´²¡þ˜^k••‚§Ùå:´z0,ª:´Z§f(z)´½Â3CþüŠ¼ê"?¿^˜©:zk=xk+iyk(k=0,1,,n,zn=Z)_r•‚C©¤n‡ã§3z‡ãzk 1zkþ?:zk,ŠÚnåf(zk)Dzk(Dzk=zk zk 1).k=1Pl=maxkjDzkj,XJl!0ž§þãÚª4••3§…ÙŠ†lã©{Úˆzk
2、{Ã'§Ò¡ù‡4••f(z)÷•‚Cgz0ZÈ©§PŠZf(z)dz.C3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c92/12OŽ•{TheoremRf(z)=u(x,y)+iv(x,y)3•‚CþëY§KEÈ©f(z)dz•C3§…ZZZf(z)dz=u(x,y)dx v(x,y)dy+iv(x,y)dx+u(x,y)dy.CCC3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c93/12OŽ•{TheoremRf(z)=u(x,y)+iv(x,y)3•‚CþëY§KEÈ©f(z)d
3、z•C3§…ZZZf(z)dz=u(x,y)dx v(x,y)dy+iv(x,y)dx+u(x,y)dy.CCC5¿ØAO(²,•‚˜Æ•1w½Åã1w•‚,¿Œ¦•.3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c93/12OŽ•{TheoremRf(z)=u(x,y)+iv(x,y)3•‚CþëY§KEÈ©f(z)dz•C3§…ZZZf(z)dz=u(x,y)dx v(x,y)dy+iv(x,y)dx+u(x,y)dy.CCC5¿ØAO(²,•‚˜Æ•1w½Åã1w•‚,¿Œ¦•.úªŒ/ª/¤ZZf(z)dz=(
4、u+iv)(dx+idy).CC3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c93/12OŽ•{TheoremRf(z)=u(x,y)+iv(x,y)3•‚CþëY§KEÈ©f(z)dz•C3§…ZZZf(z)dz=u(x,y)dx v(x,y)dy+iv(x,y)dx+u(x,y)dy.CCC5¿ØAO(²,•‚˜Æ•1w½Åã1w•‚,¿Œ¦•.úªŒ/ª/¤ZZf(z)dz=(u+iv)(dx+idy).CC½È©µ{ü1w•‚C:x=x(t),y=y(t)(atb),…z0=x(a)+iy(a),Z=x
5、(b)+iy(b),KkZZb f(z)dz=(u+iv)x0(t)dt+iy0(t)dtCaZb=f(z(t))z0(t)dt.3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ùa)Û¼êÈ©L«2013c93/12Proof.[½ny²]zk=xk+iyk,Dxk=xk xk 1,Dyk=yk yk 1,Dzk=Dxk+iDyk,zk=xk+ihk,k=1,2,,n.Knn åf(zk)Dzk=åuxk,hk,+ivxk,hk,(Dxk+iDyk)k=1k=1n =åuxk,hk,Dxk vxk,hk,Dykk=1n
6、 +iåvxk,hk,Dxk+uxk,hk,Dyk.k=1-l!0,þªmà4•ZZu(x,y)dx v(x,y)dy+iv(x,y)dx+u(x,y)dy,CClyf(z)÷•‚CÈ©•3,…½n¥ª¤á.3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c94/12Ä5Ÿµ3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c95/12Ä5ŸµRR1kf(z)dz=kf(z)dz,k•E~ê¶CC3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c95/12Ä
7、5ŸµRR1kf(z)dz=kf(z)dz,k•E~ê¶RCCRR2[f(z)g(z)]dz=f(z)dzg(z)dz;CCC3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c95/12Ä5ŸµRR1kf(z)dz=kf(z)dz,k•E~ê¶RCCRR2[f(z)g(z)]dz=f(z)dzg(z)dz;RCRCC3 f(z)dz= f(z)dz,ùp§C L«†CƒÓ••ƒ‡•CC‚¶3.1EC¼êÈ©(¥‰ŒêÆÆ)13Ù)Û¼êÈ©L«2013c95/12Ä5ŸµRR1kf(z)dz=kf(
8、z)dz,k•E~ê¶RCCRR2[f(z)g(z)]dz=f(z)dzg(z)dz;RCRCC3 f(z)dz= f