欢迎来到天天文库
浏览记录
ID:31812188
大小:523.00 KB
页数:29页
时间:2019-01-18
《人教版数学八年级下《第十九章一次函数》导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、19.1变量与函数学习目标、重点、难点【学习目标】1、常量、变量的概念;2、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;3、图象的定义;4、描点法画函数图象的一般步骤;【重点难点】1、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;2、描点法画函数图象的一般步骤;常量:在一个变化过程中,数值始终不变的量变量:在一个变化过程中,数值发生改变的量有关概念函数函数函数的表示方法列表法图象法解析法自变量的取值范围函数值图象定义:对于一个函数,如果把自变量和函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由点组成
2、的图形叫做函数的图象描点法画函数图象的一般步骤(1)图象(2)描点(3)连线知识概览图新课导引第29页有资料显示,影响气温有三个方面的因素,即纬度位置、海陆位置和地形.其中,地形对气温的影响是巨大的,地理学家经过多年探测和研究发现,海拔每升高100米,气温下降0.6℃.【问题探究】 如果山脚的气温是24℃,那么相对山脚高度为2000米的山顶的气温又如何呢?相对山脚高度为x米处的气温又如何表达呢?【解析】山脚的气温为24℃,相对山脚高度为2000米的山顶的气温应比24℃低,降低的温度为0.6×=0.6×20=12(℃),故可知相对山脚高度为2000米的山顶气温为
3、24-12=12(℃).同理,相对山脚高度为xm处的气温可表示为(24-0.6×)℃教材精华知识点1常量与变量不同的事物在变化过程中,有些量的值是按照某种规律变化的,有些量的值是始终不变的.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.拓展 常量与变量是相对的,判断常量与变量的前提条件是“在某一变化过程中”,在不同的变化过程中,同一个量在不同过程中可能不同.如工作量问题,工作量=工作效率×工作时间,若工作量一定,则工作效率、工作时间为变量;若工作效率一定,则工作量、工作时间为变量.知识点2函数的概念一般地,在一个变化过程中,如果有两个
4、变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.函数的定义中包括三个要素:(1)自变量的取值范围;(2)两个变量之间的对应关系;(3)后一个变量被唯一确定而形成的变化范围.拓展(1)自变量与函数都用什么字母表示无关紧要,自变量可用x表示,也可用t,u,p,…中的任何一个字母表示,函数可用y表示,也可用s,v,q,…中的任何一个字母表示.(2)在我们所研究的范围内,有时两个变量之间虽然有一定的关系,但却不符合函数中的对应关系,也就是说,这种关系不是“唯一确定”的关系,那么这两个变量之间就不存在函数关系.第
5、29页(3)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系.必须是“对于x的每一个值,y都有唯一的值与之对应”.例如:“一个数与它的绝对值”,若一个数用x表示,它的绝对值用y表示,其中x可以取任意实数,即自变量的取值范围是全体实数,对应关系是一个数与它的绝对值对应,一个数的绝对值是这个数的函数.规律方法小结 确定函数关系的方法:判断变量之间是否构成函数关系,就是看是否存在两个变量.并且在这两个变量中,确定好哪个是自变量,哪个是因变量,自变量在变化过程中处于主动地位,因变量在变化过程中处于被动地位,自变量每变一个值,因变量都
6、必须有唯一确定的值与它相对应,这样,它们才能构成函数关系.知识点3 函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式.我们应从以下几个方面来理解函数关系式的概念:(1)函数关系式是等式.例如:y=2x+3就是一个函数关系式,我们可以说代数式2x+3是x的函数,但不能说2x+3是函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个变量表示函数.例如:y=2x2+3中,y是x的函数,x是自变量.(3)书写函数关系式是有顺序的.例如:y=x-3表示y是x的函数;若x=y+3,则表示x是y的
7、函数.也就是说,求y关于x的函数关系式,必须用自变量x的代数式表示y,即得到的等式的左边是一个变量y,右边是一个含x的代数式.(4)用数学式子表示函数的方法叫解析法.知识点4 自变量的取值范围的确定函数自变量的取值范围的确定必须考虑两个方面:首先,自变量的取值必须使含自变量的代数式有意义;其次,自变量的取值应使实际问题有意义.这两个方面缺一不可,尤其是后者,在学习过程中特别容易忽略.因此,在分析具体问题时,一定要细致周到地从多方面考虑.拓展在函数关系式中,自变量的取值要使函数关系有意义,可分下列几种情况:(1)当函数关系式是一个只含有一个自变量的整式时,自变量
8、的取值范围是全体实数.例如:y=2x-
此文档下载收益归作者所有