欢迎来到天天文库
浏览记录
ID:31735432
大小:178.33 KB
页数:5页
时间:2019-01-17
《2018年中考数学综合能力提升练习卷:二次函数在实际生活中的应用专题练习卷(无答案)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2cZ0图1177B.一米C.16一米4403.足球运动员将足球沿与地面成一定角度的方向踢出,A.16—米40D.匕米4足球飞行的路线是一条抛物线,不考虑空气阻力,足球距二次函数在实际生活中的应用专题练习卷1.如图,有一块边长为6c加的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A./3cnrB.—>/3cnr22.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为兀轴,建立平面直角
2、坐标系,桥的拱形可近似看成抛物线y=--i-(x-80)2+16,桥拱与桥墩4C的交点C恰好在水面,有4C丄兀轴,若OA=10米,则桥面离水面的高度AC为()离地面的高度力(单位:727)与足球被踢出后经过的吋间/(单位:5)之间的关系如下表:t01234567•••h08141820201814•••9下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线匸一;③足球被踢出9$时落地;2④足球被踢出1.5$时,距离地面的高度是11刃,其中正确结论的个数是()A.1B.2C.3D.44.
3、如图1,在矩形ABCD中,动点E从A出发,沿AB—BC方向运动,当点E到达点C时停止运动,过点、E做FE丄AE,交CD于F点、,设点E运动路程为兀,FC=yf如图2所表示的是y与兀的函数关系的大致图象,当点E在2BC上运动时,FC的最大长度是土,则矩形ABCD的面积是()A25一44.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛岀后1」秒时到达相同的最大离地高度,第一个小球抛出后/秒时在空中与第二个小球的离地高度相同,则t=.
4、5.—小球从距地面1加高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程为加;(2)小球第n次着地时,经过的总路程为m.第1次第2次•・・第力次6.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为图17.如图,一
5、抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.8.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量(千克)与每千克售价X(元)满足一次函数关系,部分数据如下表:售价X(元/千克)506070销售量y(千克)1008060(1)求y与兀之间的函数表达式;(2)设商品每天的总利润为W(元),求W与兀之间的函数表达式(利润二收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多
6、少元时获得最大利润,最大利润是多少?4.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?5.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为6()元.工人甲第x天7.5x(O7、与兀满足如下关系:y=V75x+10(48、—S^CDf求点E的坐标;(3)如图2,设F(-1,-4),FG丄y于G,在线段0G上是否存在点P,使ZOBP二ZFPG?若存在,求加的取值范围;若不存在,请说明理由.13.抛物线y=q2+/zx+c过A(2,3),B(4,3),C(6,-5)三点(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE丄AB交AC于点E,若满足些=蚣,求点D的坐标;AE2(3)如图②,F为抛物线顶点,过A作直线/丄AB,若点
7、与兀满足如下关系:y=V75x+10(48、—S^CDf求点E的坐标;(3)如图2,设F(-1,-4),FG丄y于G,在线段0G上是否存在点P,使ZOBP二ZFPG?若存在,求加的取值范围;若不存在,请说明理由.13.抛物线y=q2+/zx+c过A(2,3),B(4,3),C(6,-5)三点(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE丄AB交AC于点E,若满足些=蚣,求点D的坐标;AE2(3)如图②,F为抛物线顶点,过A作直线/丄AB,若点
8、—S^CDf求点E的坐标;(3)如图2,设F(-1,-4),FG丄y于G,在线段0G上是否存在点P,使ZOBP二ZFPG?若存在,求加的取值范围;若不存在,请说明理由.13.抛物线y=q2+/zx+c过A(2,3),B(4,3),C(6,-5)三点(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE丄AB交AC于点E,若满足些=蚣,求点D的坐标;AE2(3)如图②,F为抛物线顶点,过A作直线/丄AB,若点
此文档下载收益归作者所有