高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4

高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4

ID:29711072

大小:260.50 KB

页数:6页

时间:2018-12-22

高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4_第1页
高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4_第2页
高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4_第3页
高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4_第4页
高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4_第5页
资源描述:

《高中数学 第一章 三角函数 1.5 正弦函数的图像与性质 1.5.1 正弦函数的图像教案 北师大版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.5.1正弦函数的图像整体设计教学分析研究函数的性质常常以图像直观为基础,这点学生已经有些经验,通过观察函数的图像,从图像的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图像,在此基础上再利用图像来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期现象的研究放在了本章开篇

2、第一节.由于正弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图像是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.三维目标1.通过实验演示,让学生经历图像画法的过程及方法,通过对图像的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过本节学习,理解正弦函

3、数图像的画法.借助图像变换,了解函数之间的内在联系.通过三角函数图像的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图像.3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.重点难点教学重点:正弦函数的图像.教学难点:将单位圆中的正弦线通过平移转化为正弦函数图像上的点.课时安排1课时教学过程导入新课思路1.(复习导入)遇到一个新的函数,非常自然

4、的是画出它的图像,观察图像的形状,看看有什么特殊点,并借助图像研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx的图像是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图像是什么?是如何画出它们图像的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图像.思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系

5、的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图像.物理中把简谐运动的图像叫作“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.有了上述实验,你对正弦函数的图像是否有了一个直观的印象?画函数的图像,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图像.推进新课新知探究提出问题问题①:作正弦函数图像的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应

6、点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图像上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图像呢?问题②:如何得到y=sinx,x∈R时的图像?活动:教师先让学生阅读教材、思考讨论,先引导学生弄清什么是角α的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图像,怎样在x轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x∈[0,2π]的图像,就很容易得到y=sinx,x∈

7、R时的图像了.对问题①,第一步,可以想象把单位圆圆周剪开并12等分(教材中的说明中强调“所分的等份越细,画出的图像越精确.”),再把x轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O1上的各分点作x轴的垂线,就可以得到对应于0、、、、、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在[0,2π]上的一段光滑曲

8、线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图像的感知).这是本节的难点,教师要和学生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。