高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文

ID:29390128

大小:703.00 KB

页数:11页

时间:2018-12-19

高考数学二轮复习 专题2 函数与导数 教案 文_第1页
高考数学二轮复习 专题2 函数与导数 教案 文_第2页
高考数学二轮复习 专题2 函数与导数 教案 文_第3页
高考数学二轮复习 专题2 函数与导数 教案 文_第4页
高考数学二轮复习 专题2 函数与导数 教案 文_第5页
资源描述:

《高考数学二轮复习 专题2 函数与导数 教案 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012届高考数学二轮复习专题二函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数

2、的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉

3、,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()ABCD答案:B解析:在选项B中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间上有四个不同的根,则-8-6-4-202468yxf(x)=m(m>0)答案

4、:-8解析:因为定义在R上的奇函数,满足,所以,所以,由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间上有四个不同的根,不妨设,由对称性知,.所以.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的

5、综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x为何值时,不等式成立.解析:当时,.当时,.故时,.时,为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数

6、学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)解析:设楼房每平方米的平均综合费为元,依题意得:.则,令,即,解

7、得.当时,;当时,,因此,当时,取得最小值,元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数,其中.(1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.解析:(1)

8、由已知得,令,得,要取得极值,方程必须有解,所以△,即,此时方程的根为:,,所以当时,x(-∞,x1)x1(x1,x2)x2(x2,+∞)f’(x)+0-0+f(x)增函数极大值减函数极小值增函数所以在x1,x2处分别取得极大值和极小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。