一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

ID:29096969

大小:322.00 KB

页数:10页

时间:2018-12-16

一元二次方程根的判别式及根与系数的关系_第1页
一元二次方程根的判别式及根与系数的关系_第2页
一元二次方程根的判别式及根与系数的关系_第3页
一元二次方程根的判别式及根与系数的关系_第4页
一元二次方程根的判别式及根与系数的关系_第5页
资源描述:

《一元二次方程根的判别式及根与系数的关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一元二次方程根的判别式及根与系数的关系◆【课前热身】1.方程(2x-1)(3x+1)=x2+2化为一般形式为______,其中a=____,b=____,c=____.2.关于x的一元二次方程mx2+nx+m2+3m=0有一个根为零,则m的值等于_____.3.关于x的一元二次方程x2+mx+n=0的两个根为x1=1,x2=-2,则x2+mx+n分解因式的结果是______.4.关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,则a的值是()A.1B.C.-D.±5.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于()A

2、.1B.2C.1或2D.0【参考答案】1.5x2-x-3=05-1-32.-33.(x-1)(x+2)5.D6.B◆【考点聚焦】知识点:一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理大纲要求:1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题.◆【备考兵法】〖考查重点与常见题型〗1

3、.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x的方程ax2-2x+1=0中,如果a<0,那么根的情况是()(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15(B)12(C)6(D)33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析

4、问题、解决问题的能力.在一元二次方程的应用中,列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(虽然是原方程的解)一定要舍去.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:①根的判别式;②二次项系数,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.◆【考点链接】1.一元二次方程根的判别式关于x的一元二次方程的根的判别式为.(1)>0一元二次方程

5、有两个实数根,即.(2)=0一元二次方程有相等的实数根,即.(3)<0一元二次方程实数根.2.一元二次方程根与系数的关系若关于x的一元二次方程有两根分别为,,那么,.◆【典例精析】例1(四川绵阳)已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.【分析】这是一道确定待定系数m的一元二次方程,又讨论方程解的情况的优秀考题,需要考生具备分类讨论的思维能力.【答案】(1)△=[2(k—1)]2-4(k2-1)=4k2-8k+4-4k2+4=-8k

6、+8.∵原方程有两个不相等的实数根,∴-8k+8>0,解得k<1,即实数k的取值范围是k<1.(2)假设0是方程的一个根,则代入得02+2(k-1)·0+k2-1=0,解得k=-1或k=1(舍去).即当k=-1时,0就为原方程的一个根.此时,原方程变为x2-4x=0,解得x1=0,x2=4,所以它的另一个根是4.例2(北京)已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0(1)x2+x-2=0(2)x2+2x-3=0(3)……x2+(n-1)x-n=0(n)(1)请解上述一元二次方程(1),(2),(3),(n);(2)请你指出这n个方程的根具有什么共同特点

7、,写出一条即可.【分析】由具体到一般进行探究.【答案】(1)<1>(x+1)(x-1)=0,所以x1=-1,x2=1.<2>(x+2)(x-1)=0,所以x1=-2,x2=1.<3>(x+3)(x-1)=0,所以x1=-3,x2=1.……(x+n)(x-1)=0,所以x1=-n,x2=1.(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.【点评】本例从教材要求的基本知识出发,探索具有某种特点的方程的解题规律及方程根与系数之间的关系,注重了对学生观察、类比及联想等数学思想方法的考查.例3(江苏南京)某村计

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。