资源描述:
《空间向量及其应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、空间向量及其应用一.课标要求: (1)空间向量及其运算 ①经历向量及其运算由平面向空间推广的过程; ②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③掌握空间向量的线性运算及其坐标表示; ④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ①理解直线的方向向量与平面的法向量; ②能用向量语言表述线线、线面、面面的垂直、平行关系; ③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④能
2、用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 二.命题走向 本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测07年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
3、 三.要点精讲 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 加法交换率: 加法结合率: 数乘分配率: 说明:①引导学生利
4、用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。 注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使= 注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是唯一确定的实数。②判断定理
5、:若存在唯一实数,使=(≠0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。 ⑵对于确定的和,=表示空间与平行或共线,长度为
6、
7、,当>0时与同向,当<0时与反向的所有向量。 ⑶若直线l∥,,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。 推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式 ① 其中向量叫做直线l的方向向量。 在l上取,则①式可化为② 当时,点P是线段AB的中点,则③ ①
8、或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。 注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。 4.向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥。注意:向量∥与直线a∥的联系与区别。 共面向量:我们把平行于同一平面的向量叫做共面向量。 共面向量定理如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使① 注:与共线向量定
9、理一样,此定理包含性质和判定两个方面。 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使 & 空间