§8.5 空间向量及其应用

§8.5 空间向量及其应用

ID:42996481

大小:567.61 KB

页数:13页

时间:2019-09-23

§8.5 空间向量及其应用_第1页
§8.5 空间向量及其应用_第2页
§8.5 空间向量及其应用_第3页
§8.5 空间向量及其应用_第4页
§8.5 空间向量及其应用_第5页
资源描述:

《§8.5 空间向量及其应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§8.5空间向量及其应用考点一 空间角1.(2014课标Ⅱ,11,5分)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )A.110B.25C.3010D.22答案 C2.(2014广东,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是(  )A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)答案 B3.(2014四川,8,5分)如图,在正方体ABCD-

2、A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )A.33,1B.63,1C.63,223D.223,1答案 B4.(2014北京,17,14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解析 (

3、1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.又因为AB⊄平面PDE,所以AB∥平面PDE.因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,所以AB∥FG.(2)因为PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),BC=(1,1,0).设平面ABF的法向量为n=(x,y,z),则n·AB=0,n·AF=0,即x=0,y+z=0.令z=1,则y=-1.

4、所以n=(0,-1,1).设直线BC与平面ABF所成角为α,则sinα=

5、cos

6、=n·BC

7、n

8、

9、BC

10、=12.因此直线BC与平面ABF所成角的大小为π6.设点H的坐标为(u,v,w).因为点H在棱PC上,所以可设PH=λPC(0<λ<1),即(u,v,w-2)=λ(2,1,-2).所以u=2λ,v=λ,w=2-2λ.因为n是平面ABF的法向量,所以n·AH=0,即(0,-1,1)·(2λ,λ,2-2λ)=0.解得λ=23,所以点H的坐标为43,23,23.所以PH=432+232+-

11、432=2.5.(2014陕西,17,12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.解析 (1)证明:由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1.由题设,BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG

12、∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),DA=(0,0,1),BC=(-2,2,0),BA=(-2,0,1).设平面EFGH的法向量n=(x,y,z),∵EF∥AD,FG∥BC,∴n·DA=0,n·BC=0,得z=0,-2x+2y=0,取n=(1,1,0),∴si

13、nθ=

14、cos

15、=BA·n

16、BA

17、

18、n

19、=25×2=105.解法二:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),∵E是AB的中点,∴F,G分别为BD,DC的中点,得E1,0,12,F(1,0,0),G(0,1,0).∴FE=0,0,12,FG=(-1,1,0),BA=(-2,0,1).设平面EFGH的法向量n=(x,y,z),则n·FE=0,n·FG=0,得12z=0,-x+y=0,取n=(1,1,0),∴sinθ=

20、

21、cos

22、=BA·n

23、BA

24、

25、n

26、=25×2=105.6.(2014天津,17,13分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.解析 解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。