西畈中学教案:《垂直于弦直径》

西畈中学教案:《垂直于弦直径》

ID:20834392

大小:56.50 KB

页数:3页

时间:2018-10-16

西畈中学教案:《垂直于弦直径》_第1页
西畈中学教案:《垂直于弦直径》_第2页
西畈中学教案:《垂直于弦直径》_第3页
资源描述:

《西畈中学教案:《垂直于弦直径》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、垂直于弦的直径一、素质教育目标(一)知识教学点1.使学生通过观察实验理解圆的轴对称性;2.掌握垂径定理,理解垂径定理的推证过程;3.能初步应用垂径定理进行计算和证明.(二)能力训练点1.培养学生独立思考、勇于创新精神;2.进一步培养学生观察问题、分析问题和解决问题的能力.(三)德育渗透点1.结合本课教学特点,向学生进行美育教育;2.逐步树立已知与未知,一般与特殊的思考方法.二、教学重点、难点和疑点1.重点:垂径定理及应用.2.难点:垂径定理的证明.3.疑点:垂径定理的题设是“直径垂直于弦”,学生容易忽略是“直径”.教师教学中要有意举一些容易错的

2、例子,加深对定理的理解.三、教学步骤(一)明确目标请同学们回答下列问题:1.如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做________;那么这条直线叫做________.2.等腰三角形是轴对称图形吗?3.“圆”是不是轴对称图形?它的对称轴是什么?教师利用提问1.,2.的形式,复习轴对称图形的概念.提问3.的目的是引出本节课的第一个知识点.在学生回答后,引导学生观察电脑演示将圆对折的情形.教师讲解将圆沿着一条直径对折,你观察到了什么情况?这时学生回答,教师板书.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

3、接着电脑继续演示,教师讲解:由图7-9(1)中CD为⊙O的直径;变到图7-9(2)中在⊙O上任意取一点A;再变到图7-9(3)从点A作直径CD的垂线交⊙O于另一个交点B.这时我们可以看出图(3)中的点B与点A是否是对称点呢?A、B是关于什么对称.教师进一步提出当直径CD垂直于弦AB,将能得到什么结论呢?这就是本节学习的内容.“7.3垂直于弦的直径(一)”.教师这样引入课题的目的,使学生从认识上初步完成实验——观察——感性——理性的认识过程.逐步学会从实践中引入、从现象中抽象、从事实中概括,从而激发学生的学习动机.(二)整体感知为了使学生进一步通

4、过实验的观察,很快地概括出本课的教学内容,由图7-9(1)可知CD所在直线是⊙O的对称轴;到图7-9(2)从⊙O上取一点A,过点A作直径CD的垂线交⊙O于点B,得到图7-9(3),这时沿着CD折叠,引导学生观察重合部分,学生纷纷猜想结论.通过实验——观察——猜想获得感性认识.这个实验结论是否正确,还需要证明.学生带着一种好奇心,积极主动参与到证明这个结论中去.学生回答证明过程,教师板书.已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=EB,=,=.证明:连结OA,OB,则OA=OB.又CD⊥AB,∴直线CD是等腰△OAB

5、的对称轴,又是△O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,、分别和、重合.因此,AE=BE,=,=.从而得到圆的一条重要性质.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.教师这样从设计电脑演示的全过程,目的是指导学生注重知识的发生、发展过程.使学生在观察中不知不觉地接受了新知识,既获得了知识,又产生了浓厚的兴趣.(三)重点、难点的教学及目标完成过程垂径定理是由演示实验——观察——感性——理性的全过程.为了使学生能够真正理解垂径定理,引导学生分析垂径定理的题设和结论,加深对定理的认

6、识并强化用数学表达式表示出来:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.〈2〉                 〈1〉〈3〉                             〈4〉〈5〉把直径化分为(1);把垂直于弦化分为(2);把平分弦化为(3);平分优弧化为(4);平分劣弧化分为(5).为了运用的方便,不易出现错误,将原定理叙述为:(1)过圆心;(2)垂直于弦;(3)平分弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.这样做目的是加深对定理的理解,突出重点,分散难点,避免学生记混.接着为了巩固垂径定理,引导学生完成下

7、面两道题.例1 如图7-10,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.教师分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,学生回答,教师板书计算过程.解:连结OA,作OE⊥AB,垂足为E.∵OE⊥AB,∴AE=EB.∵AB=8cm,∴AE=4cm.又∵OE=3cm,在Rt△AOE中,∵⊙O的半径为5cm.教师强调:从例1可以知道作“弦心距”是很重要的一条辅助线,弦心距的作用就是平分弦,平分弦所对的弧,它和直径一样.求圆的半径问题,要和弦心距

8、,弦的一半和半径构造出一个直角三角形,和勾股定理联系起来.例2 已知:如图7-11,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。