欢迎来到天天文库
浏览记录
ID:20530123
大小:370.94 KB
页数:15页
时间:2018-10-13
《斐波那契数列及黄金分割》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、斐波那契数列斐波那契数列斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。定义斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34……这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(LeonardoFi
2、bonacci),自然中的斐波那契数列生于公元1170年,卒于1240年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(LiberAbacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。通项公式递推公式斐波那契数列:1、1、2、3、5、8、13、21、……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(1)=1,F(2)=1,F(n)=
3、F(n-1)+F(n-2)(n≥3),显然这是一个线性递推数列。通项公式斐波那契数列通项公式(见上图)(又叫“比内公式”,是用无理数表示有理数的一个范例。)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)通项公式的推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,,X2=(1-√5)/2。则F(n)=C1*X1^n+C2*X2^n。∵F⑴=F⑵=1。∴C1*X1+C2*X2。C1*X1^2+C2*X2^2。解得C1=√5/5,C2=-√5/5。∴F(n)=(√5/5)*{[(1+√5)/2]^
4、n-[(1-√5)/2]^n}(√5表示根号5)。方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s。使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。则r+s=1,-rs=1。n≥3时,有。F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。……F⑶-r*F⑵=s*[F⑵-r*F⑴]。联立以上n-2个式子,得:F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。∵s=1-r,F
5、⑴=F⑵=1。上式可化简得:F(n)=s^(n-1)+r*F(n-1)。那么:F(n)=s^(n-1)+r*F(n-1)。=s^(n-1)+r*s^(n-2)+r^2*F(n-2)。=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+r^3*F(n-3)。……=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)*F⑴。=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)。(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。=[s^(n
6、-1)-r^(n-1)*r/s]/(1-r/s)。=(s^n-r^n)/(s-r)。r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2。则F(n)=(√5/5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}。方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解:设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/
7、2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(
此文档下载收益归作者所有