欢迎来到天天文库
浏览记录
ID:54423778
大小:32.50 KB
页数:1页
时间:2020-04-17
《黄金分割与斐波那契数列.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、黄金分割与斐波那契数列把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618(1-0.618)/0.618=0.618这个数值体现在诸如绘画、雕塑、音乐、建筑等艺术领域,在管理、工程设计等方面也有着不可忽视的作用。"斐波那契数列"指的是:1、1、2、3、5、8、13、21、34、55、89、144、
2、…这些数被称为"斐波那契数"。特点是除前两个数(数值为1)之外,每个数都是它前面两个数之和。斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金比的。即f(n)/f(n-1)-→0.618…由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金比这个无理数。当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金比的。不仅如此,随便选两个整数,然后按照斐波那契数的规律排下去,两数之比也是会逐渐逼近黄金比的。1
此文档下载收益归作者所有