欢迎来到天天文库
浏览记录
ID:19485504
大小:199.17 KB
页数:7页
时间:2018-09-30
《第二章《二次函数》复习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第二章《二次函数》复习复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、一元二次方程与抛物线的结合与应用;4、利用二次函数解决实际问题。技能目标:培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。复习重、难点:函数综合题型复习方法:自主探究、合作交流复习过程:一、复习练习:1、已知抛物线y=(m+1)x开口向下,求m的值。2、函数y=x2+2x+1写成
2、y=a(x-h)2+k的形式是( )A.y=(x-1)2+2B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13、抛物线y=(x+3)2的顶点坐标是______,对称轴是______。4、(2010兰州)抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=25、(2010济南)二次函数的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1B.x>2C.-1<x<2D.x<-1或x>27二、复习提纲(学生独立练习,小组讨论)1、二次
3、函数解析式的三种表示方法:(1)顶点式:(2)交点式:(3)一般式:2、填表:抛物线对称轴顶点坐标开口方向y=ax2当a>0时,开口。当a<0时,开口。Y=ax2+kY=a(x-h)2y=a(x-h)2+kY=ax2+bx+c3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而。4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值。三、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)1
4、、已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:(1)abc(2)b2-4ac(3)2a+b(4)a+b+c(上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)7Oxy-111、已知抛物线y=x2+(2k+1)x-k2+k(1)求证:此抛物线与x轴总有两个不同的交点;(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22=-2k2+2k+1①求抛物线的解析式;②此抛物线上是否存在一点P,使△PAB的面积等于3,
5、若存在,请求出点P的坐标;若不存在,请说明理由。(此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)3、某商品平均每天销售40件,每件盈利20元,若每件每降阶1元,每天可多销售10件。(1)若每件降价x元,可获的总利润为y元,写出x与y之间的关系式。(2)每件降价多少元时,每天利润最大?最大利润为多少?分析:此题可用一表格来分析各量之间的关系。有了这一表格,同学们不难解决此题了。解:①由题意可知:7∵a=-10<0∴图象最高点坐标为(8,1440)∴当x=8时y最大=1440答:每件降价8元时,每天最大利润为1440元。四、用数学
6、(利用二次函数解决实际问题)一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米。(1)根据题意建立直角坐标系,并求出抛物线的解析式。(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)五、归纳小结:提问:通过本节课的练习,你学到了什么知识?六、思维训练(
7、供学有余力的学生做):已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0),B(x2,0)(x1≠x2)。(1)求a的取值范围,并证明A、B两点都在原点的左侧;(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。七、巩固练习(一)填空题:⑴抛物线的对称轴是.这条抛物线的开口向。⑵用配方法将二次函数化成的形式是。⑶已知二次函数的图象的顶点的横坐标是1,则b=。⑷二次函数的图象的顶点坐标是,在对称轴的右侧y随x的增大而。7⑸已知抛物线的顶点坐标是(-2,3),则=。⑹若抛物线的顶点在x轴上,则c=。⑺已知
此文档下载收益归作者所有