苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题

苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题

ID:14006916

大小:233.50 KB

页数:20页

时间:2018-07-25

上传者:U-12143
苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题_第1页
苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题_第2页
苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题_第3页
苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题_第4页
苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题_第5页
资源描述:

《苏科版八年级数学上《第2章轴对称图形》单元测试(2)含答案解析初二数学试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

《第2章轴对称图形》 一、选择题1.2008年北京车展上,我国自主品牌的轿车不论在设计上还是在性能上,都引起了外国许多专家的赞叹,下面是我国自主品牌的轿车的车标,其中是轴对称图形的有(  )A.1个B.2个C.3个D.4个2.如图,该图案对称轴的条数是(  )A.4条B.3条C.2条D.1条3.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是(  )A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断4.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是(  )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形5.有两个角相等的梯形是(  )A.等腰梯形B.直角梯形C.一般梯形D.直角梯形和等腰梯形6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为(  ) A.3B.3.5C.4D.4.57.若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是(  )A.等腰三角形B.等边三角形C.任意三角形D.不能确定8.如图,在等边△ABC中,BD、CE是两条中线,则∠1的度数为(  )A.90°B.30°C.120°D.150°9.A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,这样的C点可找(  )A.2个B.4个C.6个D.8个10.如图,D、E是等边△ABC的边BC上的三等分点,O为△ABC内一点,且△ODE为等边三角形,则图中等腰三角形的个数是(  )A.4个B.5个C.6个D.7个 二、填空题11.线段AB关于直线MN对称,则  垂直平分  .12.在等腰△ABC中,AB=AC,∠A=50°,则∠B=  .13.如图,点Q在∠AOB的平分线上,QA⊥OA,QB⊥OB,A、B分别为垂足,则AQ=  .14.等腰三角形的周长为18cm,其中一边为8cm,则另两边的长分别为  . 15.如图,在△ABC中,∠ACB=130°,AC、BC的垂直平分线分别交AB于点M、N,则∠MCN=  .16.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于  cm2.17.给出一个梯形ABCD,AD∥BC,下面四个论断:①∠A=∠D;②AB=CD;③∠B=∠C;④AC=BD.其中能判断梯形ABCD为等腰梯形的是  (填序号).18.如图,在梯形ABCD中,AD∥BC,AB=DC,BC=AC,∠ACD=30°,则∠D=  . 三、解答题19.如图,在正方形网格内有∠AOB,请你利用网格画出∠AOB的平分线,并说明理由.20.如图,△ABC绕点A旋转到AB′C′,BC与B′C′交于P,试说明AP平分∠BPC′.21.如图,已知AB=AC,BD=DC,AD的延长线交BC于点E. (1)试说明BE=EC;(2)试说明AD⊥BC.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在等边△ABC的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR为何种三角形?试说明理由.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.  《第2章轴对称图形》参考答案与试题解析 一、选择题1.2008年北京车展上,我国自主品牌的轿车不论在设计上还是在性能上,都引起了外国许多专家的赞叹,下面是我国自主品牌的轿车的车标,其中是轴对称图形的有(  )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】结合车标图案,根据轴对称图形的概念求解.【解答】解:第一个图形,不是轴对称图形,故选项错误;第二个图形,是轴对称图形,故选项正确;第三个图形,不是轴对称图形,故选项错误;第四个图形,不是轴对称图形,故选项错误;第五个图形,是轴对称图形,故选项正确.故选B.【点评】本题考查了轴对称图形的概念:熟记轴对称的关键是寻找对称轴,两边图象折叠后可重合是解题的关键. 2.如图,该图案对称轴的条数是(  )A.4条B.3条C.2条D.1条【考点】轴对称图形.【分析】根据该图形的特点结合轴对称图形的定义得出即可.【解答】解:该图案对称轴的条数是2条.故选C. 【点评】本题考查了轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是(  )A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断【考点】线段垂直平分线的性质.【分析】首先根据题意画出图形,然后由MN是线段AB的垂直平分线,C,D是MN上任意两点,根据线段垂直平分线的性质可得:AC=BC,AD=BD,则可证得∠DAB=∠CBA,∠DAB=∠DBA,继而求得答案.【解答】解:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB﹣∠DAB,∠CBD=∠CBA﹣∠DBA,∴∠CAD=∠CBD.故选B.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等. 4.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是(  )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形【考点】生活中的轴对称现象. 【分析】三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形,即可作出判断.【解答】解:因为三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形.故选A.【点评】本题主要考查了等边三角形的判定方法,是需要熟记的内容. 5.有两个角相等的梯形是(  )A.等腰梯形B.直角梯形C.一般梯形D.直角梯形和等腰梯形【考点】梯形.【分析】由直角梯形中有两个直角,等腰梯形同一底上的两个角相等,即可求得答案.【解答】解:∵直角梯形中有两个直角,等腰梯形同一底上的两个角相等,∴有两个角相等的梯形是直角梯形和等腰梯形.故选D.【点评】此题考查了直角梯形与等腰梯形的性质.此题比较简单,解题的关键是注意直角梯形中有两个直角,等腰梯形同一底上的两个角相等. 6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为(  )A.3B.3.5C.4D.4.5【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】由题意推出BD=AD,然后,在Rt△BCD中,CP=BD,即可推出CP的长度.【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD, ∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选A.【点评】本题主要考查角平分线的性质、等腰三角形的判定和性质、折角三角形斜边上的中线的性质,关键在于根据已知推出BD=AD,求出BD的长度. 7.若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是(  )A.等腰三角形B.等边三角形C.任意三角形D.不能确定【考点】因式分解的应用.【分析】利用完全平方公式进行局部因式分解,再根据非负数的性质进行分析.【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ca=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,∴三角形是等边三角形.故选B.【点评】此题考查了完全平方公式的运用和非负数的性质,即几个非负数的和为0,则这几个非负数同时为0. 8.如图,在等边△ABC中,BD、CE是两条中线,则∠1的度数为(  )A.90°B.30°C.120°D.150°【考点】等边三角形的性质.【分析】先根据在等边△ABC中,BD、CE是两条中线得出∠AEC与∠ADB的度数,再根据四边形内角和定理即可得出结论. 【解答】解:∵△ABC是等边三角形,BD、CE是两条中线,∴∠AEC=∠ADB=90°,∠A=60°,∴∠1=360°﹣90°﹣90°﹣60°=120°.故选C.【点评】本题考查的是等边三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键. 9.A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,这样的C点可找(  )A.2个B.4个C.6个D.8个【考点】等腰直角三角形.【分析】分三种情况考虑:当A为直角顶点时,过A作AB的垂线,以A为圆心,AB长为半径画弧,与垂线交于C3、C4两点;当B为直角顶点时,过B作AB的垂线,以B为圆心,BA长为半径画弧,与垂线交于C5、C6;当C为直角顶点时,以上两种情况的交点即为C1、C2,综上,得到所有满足题意的点C的个数.【解答】解:A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,如图所示:则这样的C点有6个,故选C.【点评】此题考查了等腰直角三角形,利用了分类的思想,根据等腰直角三角形的性质找全满足题意的C点是本题的关键.  10.如图,D、E是等边△ABC的边BC上的三等分点,O为△ABC内一点,且△ODE为等边三角形,则图中等腰三角形的个数是(  )A.4个B.5个C.6个D.7个【考点】等腰三角形的判定;等边三角形的性质.【分析】根据等腰三角形判定和等边三角形性质得出△ODE、△ABC,求出∠ODE=∠OED=60°,OE=EC,OD=OB,求出∠OBC=∠OCB=30°,求出∠OBA=∠OCB=30°,即可得出、△OEC、△OBC、△AOB、△AOC也是等腰三角形.【解答】解:等腰三角形有△ODE、△ABC、△ODB、△OEC、△OBC、△AOB、△AOC,共7个,故选D.【点评】本题考查了等腰三角形的判定和等边三角形的性质的应用,注意:有两边相等的三角形是等腰三角形,有两角相等的三角形是等腰三角形. 二、填空题11.线段AB关于直线MN对称,则 MN 垂直平分 AB .【考点】线段垂直平分线的性质.【分析】根据对称轴垂直平分对应点的连线可知:线段AB关于直线MN对称,则MN垂直平分AB.【解答】解:线段AB关于直线MN对称,则MN垂直平分AB.故填MN,AB.【点评】主要考查了轴对称的性质.对称轴垂直平分对应点的连线. 12.在等腰△ABC中,AB=AC,∠A=50°,则∠B= 65° .【考点】等腰三角形的性质.【分析】根据等腰三角形性质即可直接得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B=(180°﹣50°)÷2=65°. 故答案为:65°.【点评】本题考查学生对等腰三角形的性质的理解和掌握,此题难度不大,属于基础题. 13.如图,点Q在∠AOB的平分线上,QA⊥OA,QB⊥OB,A、B分别为垂足,则AQ= BQ .【考点】角平分线的性质.【分析】由角平分线的性质可得AQ=BQ.【解答】解:∵OQ平分∠AOB,且QA⊥OA,QB⊥OB,∴AQ=BQ,故答案为:BQ.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 14.等腰三角形的周长为18cm,其中一边为8cm,则另两边的长分别为 2cm、8cm或5cm、5cm .【考点】等腰三角形的性质;三角形三边关系.【分析】分8cm是腰长与底边长两种情况讨论求解.【解答】解:①8cm是腰长时,18﹣8×2=2cm,所以,其余两边长为2cm、8cm,②8cm是底边时,(18﹣8)=5cm,所以,其余两边长为5cm、5cm,故答案为:2cm、8cm或5cm、5cm.【点评】本题主要考查了等腰三角形两腰相等的性质,难点在于要分情况讨论求解.  15.如图,在△ABC中,∠ACB=130°,AC、BC的垂直平分线分别交AB于点M、N,则∠MCN= 80° .【考点】线段垂直平分线的性质.【分析】首先由在△ABC中,∠ACB=130°,可求得∠A+∠B的度数,然后由AC、BC的垂直平分线分别交AB于点M、N,根据线段垂直平分线的性质,可得AM=CM,BN=CN,即可得∠ACM=∠A,∠BCN=∠B,继而求得∠ACM+∠BCN的度数,则可求得答案.【解答】解:∵在△ABC中,∠ACB=130°,∴∠A+∠B=50°,∵AC、BC的垂直平分线分别交AB于点M、N,∴AM=CM,BN=CN,∴∠ACM=∠A,∠BCN=∠B,∴∠ACM+∠BCN=∠A+∠B=50°,∴∠CMN=∠ACB﹣(∠ACM+∠BCN)=80°.故答案为:80°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意求得∠ACM+∠BCN=∠A+∠B是关键. 16.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于 12 cm2.【考点】角平分线的性质.【分析】过点P作PD⊥OA于点D,根据角平分线的性质求出PD的长,再由三角形的面积公式即可得出结论.【解答】解:过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm, ∵OA=8cm,∴S△POA=OA•PD=×8×3=12cm2.故答案为:12.【点评】本题考查的是角平分线的性质,根据题意作出辅助线是解答此题的关键. 17.给出一个梯形ABCD,AD∥BC,下面四个论断:①∠A=∠D;②AB=CD;③∠B=∠C;④AC=BD.其中能判断梯形ABCD为等腰梯形的是 ①②③④ (填序号).【考点】等腰梯形的判定.【分析】由同一底上两个角相等的梯形是等腰梯形得出①③能判定梯形ABCD为等腰梯形;由两腰相等的梯形是等腰梯形得出②能判定梯形ABCD为等腰梯形;由两条对角线相等的梯形是等腰梯形得出④能判定梯形ABCD为等腰梯形;即可得出结果.【解答】解:①能判定;理由如下:在梯形ABCD,AD∥BC,∵∠A=∠D,∴四边形ABCD是等腰梯形(同一底上两个角相等的梯形是等腰梯形),∴①能判定;同理:③能判定;②能判定;理由如下:在梯形ABCD,AD∥BC,∵AB=CD,∴四边形ABCD是等腰梯形(两腰相等的梯形是等腰梯形),∴②能判定;④能判定;理由如下:在梯形ABCD,AD∥BC,∵AC=BD,∴四边形ABCD是等腰梯形(两条对角线相等的梯形是等腰梯形),∴④能判定; 故答案为:①②③④.【点评】本题考查了等腰梯形的判定方法;熟练掌握等腰梯形的判定方法,并能进行推理论证是解决问题的关键. 18.如图,在梯形ABCD中,AD∥BC,AB=DC,BC=AC,∠ACD=30°,则∠D= 110° .【考点】等腰梯形的性质.【分析】由等腰梯形的性质得出∠B=∠BCD,设∠ACB=x,则∠B=∠BCD=x+30°,由等腰三角形的性质和平行线的性质得出∠BAC=∠B=x+30°,∠DAC=∠ACB=x,∠B+∠BAD=180°,得出方程,解方程求出∠BCD,即可得出∠D的度数.【解答】解:∵四边形ABCD是等腰梯形,AB=DC,∴∠B=∠BCD,设∠ACB=x,则∠B=∠BCD=x+30°,∵BC=AC,∴∠BAC=∠B=x+30°,∵AD∥BC,∴∠DAC=∠ACB=x,∠B+∠BAD=180°,即x+30+x+30+x=180°,解得:x=40°,∴∠D=180°﹣∠BCD=180°﹣70°=110°.故答案为:110°.【点评】本题考查了等腰梯形的性质、等腰三角形的性质、平行线的性质;熟练掌握等腰梯形和等腰三角形的性质,由角的关系得出方程是解决问题的关键. 三、解答题19.如图,在正方形网格内有∠AOB,请你利用网格画出∠AOB的平分线,并说明理由. 【考点】作图—复杂作图.【分析】利用边边边构造全等三角形,可得对应角相等,从而画出∠AOB的平分线.【解答】解:如图所示:OC即为所求∠AOB的平分线.【点评】考查角平分线上一点的确定;构造三角形全等或确定等腰三角形底边中点是解决本题的主要方法. 20.如图,△ABC绕点A旋转到AB′C′,BC与B′C′交于P,试说明AP平分∠BPC′.【考点】旋转的性质.【专题】证明题.【分析】作AD⊥BC于D,AD′⊥B′C′于D′,如图,先根据旋转的性质得到△ABC≌△A′B′C′,则根据全等三角形的性质得到AD=AD′,然后根据角平分线的性质即可得到AP平分∠BPC′.【解答】证明:作AD⊥BC于D,AD′⊥B′C′于D′,如图,∵△ABC绕点A旋转到AB′C′,∴△ABC≌△A′B′C′,∴AD=AD′, ∴AP平分∠BPC′.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了角平分线的性质. 21.如图,已知AB=AC,BD=DC,AD的延长线交BC于点E.(1)试说明BE=EC;(2)试说明AD⊥BC.【考点】全等三角形的判定与性质.【分析】(1)根据SSS证明△ABD与△ACD全等,再利用等腰三角形的性质证明即可;(2)根据等腰三角形的性质证明即可.【解答】证明:在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∴△ABC是等腰三角形,∴BE=EC;(2)∵△ABC是等腰三角形,BE=EC,∴AD⊥BC.【点评】此题考查全等三角形的判定和性质,以及等腰三角形的性质解答,关键是根据SSS证明△ABD与△ACD全等.  22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解. 23.如图,在等边△ABC的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR为何种三角形?试说明理由.【考点】等边三角形的判定与性质;全等三角形的判定与性质. 【分析】(1)由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形;(2)由(1)证得△ADF≌△BED,得到BD=AF,通过△ABF≌△CBD,得到∠ABF=∠BCD,求得∠RPQ=∠FBC+∠BCD=60°,同理∠PQR=∠PRQ=60°,于是得到结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形;(2)△PQR是等边三角形,理由:由(1)证得△ADF≌△BED,∴BD=AF,在△ABF与△CBD中,,∴△ABF≌△CBD,∴∠ABF=∠BCD,∵∠ABF+∠CBF=60°,∴∠CBF+∠BCF=60°,∵∠RPQ=∠FBC+∠BCD=60°,同理∠PQR=∠PRQ=60°,∴△PQR是等边三角形. 【点评】此题考查了等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定和性质是解题的关键. 24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.【考点】等腰梯形的性质.【专题】证明题.【分析】过P作PH⊥BG,把BG分成两段,根据矩形得到PF=HG,再证明△BPH和△PBE全等得到PE=BH,继而可得出结论.【解答】证明:过点P作PH⊥BG,垂足为H,∵BG⊥CD,PF⊥CD,PH⊥BG,∴∠PHG=∠HGC=∠PFG=90°,∴四边形PHGF是矩形,∴PF=HG,PH∥CD,∴∠BPH=∠C,在等腰梯形ABCD中,∠PBE=∠C,∴∠PBE=∠BPH,又∠PEB=∠BHP=90°,BP=PB,在△PBE和△BPH中∴△PBE≌△BPH(AAS), ∴PE=BH,∴PE+PF=BH+HG=BG.【点评】本题考查了等腰梯形的性质,利用“截长补短法”的截长,即把较长的线段截为两段,再分别证明线段相等,从而问题得以解决. 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
大家都在看
近期热门
关闭