正弦定理、余弦定理和解斜三角形

正弦定理、余弦定理和解斜三角形

ID:12651699

大小:722.50 KB

页数:10页

时间:2018-07-18

正弦定理、余弦定理和解斜三角形_第1页
正弦定理、余弦定理和解斜三角形_第2页
正弦定理、余弦定理和解斜三角形_第3页
正弦定理、余弦定理和解斜三角形_第4页
正弦定理、余弦定理和解斜三角形_第5页
资源描述:

《正弦定理、余弦定理和解斜三角形》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、正弦定理、余弦定理和解斜三角形1、正弦定理推导在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又,A则bc从而在直角三角形ABC中,CaB思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C同理可得,ba从而ADB(图1.1-3)证明二:(等积

2、法)在任意斜△ABC当中S△ABC=两边同除以即得:==证明三:(外接圆法)如图所示,∠A=∠D∴(R为外接圆的半径)同理=2R,=2R由于涉及边长问题,从而可以考虑用向量来研究这个问题。类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。从上面的研究过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即(1)理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;(2)等价于,,从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其

3、他边,如;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。1、余弦定理的推导如图1.1-4,在ABC中,设BC=a,AC=b,AB=c,C已知a,b和C,求边c。baAcB(图1.1-4)如图1.1-5,设,,,那么c=a-b,=cc=(a-b)(a-b)A=aa+bb-2abbc从而CaB同理可证(图1.1-5)于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。从余弦定理,又可得

4、到以下推论:(三)理解定理从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角。思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?若ABC中,C=,则,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。3.正弦定理、余弦定理及其变形形式,(1)正弦定理、三角形面积公式:;.(2)正弦定理的变形:①;②;③.(3)余弦定理:.4、正余弦定理的应用与三角形中的有关

5、公式(1)内角和定理:三角形三角和为,这是三角形中三角函数问题的特殊性,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.(2)正弦定理:(R为三角形外接圆的半径).注意:①正弦定理的一些变式:;;;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.(3)余弦定理:等,常选用余弦定理鉴定三角形的形状(4)面积公式:(其中为三角形内切圆半径).如中,若,判断的形状(答:直角三角形)。特别提醒

6、:(1)求解三角形中的问题时,一定要注意这个特殊性:;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。2、求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)。【知识点练习】1.在任一△ABC中求证:.2.在△ABC中,已知,,B=45°求A、C及c.3.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且2cos(A+B)=1求(1)角C的度数(2)AB的长度(3)△ABC的面积

7、.2.总结解斜三角形的要求和常用方法.(1).利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:①已知两角和任一边,求其它两边和一角;②已知两边和其中一边的对角,求另一边的对角,从而进一步求其它的边和角.(2)应用余弦定理解以下两类三角形问题:①已知三边求三内角;②已知两边和它们的夹角,求第三边和其它两个内角.一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.例1.中,,BC=3,则的周长为()A.   B.C

8、.      D.例2(2005年全国高考湖北卷)中,已知,AC边上的中线BD=,求sinA的值.二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3在中,已知,那么一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。