2015步步高理科数学选修4-1

2015步步高理科数学选修4-1

ID:12035426

大小:760.85 KB

页数:21页

时间:2018-07-15

2015步步高理科数学选修4-1_第1页
2015步步高理科数学选修4-1_第2页
2015步步高理科数学选修4-1_第3页
2015步步高理科数学选修4-1_第4页
2015步步高理科数学选修4-1_第5页
资源描述:

《2015步步高理科数学选修4-1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、选修4-1 几何证明选讲1.平行截割定理(1)平行线等分线段定理如果一组__________在一条直线上截得的线段______,那么在任一条(与这组平行线相交的)直线上截得的线段也________.(2)平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段成________.2.相似三角形的判定与性质(1)相似三角形的判定定理①两角对应________的两个三角形________;②两边对应成________且夹角________的两个三角形________;③三边对应成_______

2、_的两个三角形________.(2)相似三角形的性质定理①相似三角形的对应线段的比等于____________.②相似三角形周长的比等于____________.③相似三角形面积的比等于________________________.3.直角三角形射影定理直角三角形一条直角边的平方等于________________________________,斜边上的高的平方等于________________________________.4.圆中有关的定理(1)圆周角定理:圆周角的度数等于其所对弧的度数的___

3、_____.(2)圆心角定理:圆心角的度数等于________________的度数.(3)切线的判定与性质定理①切线的判定定理过半径外端且与这条半径________的直线是圆的切线.②切线的性质定理圆的切线________于经过切点的半径.(4)切线长定理从圆外一点引圆的两条切线,切线长________.(5)弦切角定理弦切角的度数等于其所夹弧的度数的________.(6)相交弦定理圆的两条相交弦,每条弦被交点分成的两条线段长的积________.(7)割线定理从圆外一点引圆的两条割线,该点到每条割线与圆的

4、交点的两条线段长的积________.(8)切割线定理从圆外一点引圆的一条割线与一条切线,切线长是这点到割线与圆的两个交点的线段长的________________.(9)圆内接四边形的性质与判定定理①圆内接四边形判定定理(ⅰ)如果四边形的对角________,则此四边形内接于圆;(ⅱ)如果四边形的一个外角________它的内角的对角,那么这个四边形的四个顶点共圆.②圆内接四边形性质定理(ⅰ)圆内接四边形的对角________;(ⅱ)圆内接四边形的外角________它的内角的对角.1.如图,F为▱ABCD的

5、边AD延长线上的一点,DF=AD,BF分别交DC,AC于点G,E,EF=16,GF=12,则BE的长为________.  第1题图     第2题图2.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB、AD的中点,则EF=________.3.如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=30°,则∠D=________.4.如图所示,EA是圆O的切线,割线EB交圆O于点C,C在直径AB上的射影为D,CD=2,BD=4,则EA

6、=________.       第4题图      第5题图5.(2012·湖南)如图所示,过点P的直线与⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.题型一 相似三角形的判定及性质例1 如图,已知在△ABC中,点D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.    思维升华 (1)三角形相似的证明方法很多,解题时应根据条件,结合图形选择恰当的方

7、法.一般的思考程序:先找两对内角对应相等;若只有一个角对应相等,再判定这个角的两邻边是否对应成比例;若无角对应相等,就要证明三边对应成比例.(2)证明等积式的一般方法是化为等积的比例式,若题目中无平行线,需利用相似三角形的性质证明. 如图,在梯形ABCD中,AD∥BC,AB=CD,DE∥CA,且交BA的延长线于E,求证:ED·CD=EA·BD.     题型二 直角三角形的射影定理例2 如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,EF⊥BC于F.求证:EF∶DF=BC∶A

8、C.     思维升华 已知条件中含直角三角形且涉及直角三角形斜边上的高时,应首先考虑射影定理,注意射影与直角边的对应法则,根据题目中的结论分析并选择射影定理中的等式,并分清比例中项. 如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC的平分线,交AD于F,求证:=.   题型三 圆的切线的判定与性质例3 如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。