资源描述:
《人教版数学中考整式复习练习及二次函数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、知识点回顾:知识点一:整式的加减(1)如何识别同类项同类项应满足下列两个条件:①所含的字母;②相同字母的指数也分别.(2)怎样合并同类项合并同类项就是把同类项的系数,所得的结果作为系数,字母和字母的指数.(3)正确理解“添括号、去括号”法则去括号的法则是:括号前面是“+”号,把括号和它前面的“+”号去掉,括号内的各项都;括号前面是“-”号,把括号和它前面的“-”号去掉,括号内的各项都要.添括号的法则是:所添括号前面是“+”号,括到括号里的各项都,所添括号前面是“-”号,括到括号里的各项都.(4)准确进行整式的加减整式的加减实质上就是“去括号”和“合并同类项”法则的综
2、合运用,如果有括号,就,如果有同类项,再.例1先化简、再求值(其中)解:=当时原式的值为点评:在求整式的值时,应先将整式进行化简,即去括号、合并同类项,然后再把整式中字母的值代入计算,可化繁为简,使运算简便.同步测试1:1.化简:.2.求比多项式少的多项式.3.先化简、再求值(其中)参考答案:1.;2.;3.,当时,值为5.知识点二:幂的运算(1)同底数幂的乘法:同底数幂相乘,底数,指数.即(,都是正整数)(2)幂的乘方:幂的乘方:底数,指数.即(,都是正整数)(3)积的乘方:先把积中的每一个因式分别,再把所得的结果.即(是正整数)(4)同底数幂的除法:同底数幂相除
3、,底数,指数.即(≠0,,都是正整数,且>)①零指数幂:不等于零的数的零次幂等于.即(≠0).②负整数指数幂:不等于零的数的负整数次幂等于这个数的正整数次幂的.即(≠0,是正整数).例2.计算[]解:=点评:在整式运算中同样应遵循先乘方、再乘除、最后做加减的原则.同步测试2:1.计算=2.计算3下列计算正确的是().(A)(B)(C)(D)参考答案:1.;2.;3.D;知识点三:整式乘法(1)单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个.(2)单项式乘多项式单项式与多项式相乘,就是根据乘
4、法对加法的分配律,用单项式乘多项式的每一项,再把所得的积.(3)多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积.例3.计算:(1);(2);解:(1)==(2)==点评:为防止“漏项”,应注意将一个多项式的每一项“遍乘”另一个多项式的每一项;要正确确定积中每项的符号;如有同类项,则应合并同类项,得出最简结果;通常情况下,最后结果应按某一字母的降幂排列。同步测试3:计算:1.;2.;3.;参考答案:1.;2.;3.;知识点四:乘法公式(1)平方差公式:两个数的和与这两个数的积,等于.即.(2)完全平方公式:两数和(或差)的
5、平方,等于它们的平方和,加(或减)它们的积的.即:,.例4.利用乘法公式计算:解:====点评:巧妙的将看作一个整体是解决本题的关键.同步测试4:1.计算:2.已知,试求的值3.计算:参考答案:1.;2.43;3.1;知识点五:整式除法(1)单项式除以单项式:单项式相除,把系数、同底数幂分别后,作为商的因式;对于只在被除式里含有的字母,则连同它的一起作为商的一个因式.(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商.(3)整式除法与整式乘法互为逆运算①整式除法中没有余式,则被除式=;②整式除法中有余式,则被除式=除式商式+
6、;例5.已知多项式能被整除,商式为,试求的值分析:根据整式除法与整式乘法互为逆运算,先求出除式与商式的积[来源:学。科。网]解:根据题意可得:=由两个多项式相等,则对应项系数必相等,得到:点评:解决这类问题的依据是:被除式=除式商式,以及两个多项式相等,则对应项系数必相等.同步测试5:计算:1.;2.;3.参考答案:1.;2.;3.;随堂检测1.当时,试求整式的值2.王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:),解答下列问题:(1)写出用含x、y的整式表示的地面总面积;(2)若,,铺1地砖的平均费用为80元,求铺地砖的
7、总费用为多少元?3.下列计算中,正确的是().(A)(B)(C)(D)4.若,,则=5.计算:;6.计算:7.已知,,试求代数式的值8.一个矩形的面积为,其宽为,试求其周长.9.计算:;10.试确定的个位数字参考答案:1.整式化简为:,当时,其值为.2.(1)地面总面积为(2)把,代入,可得总面积为:()所以铺地砖的总费用为(元)3.选D.4.=.5.6.=7.=把,,整体代入得到:即=168.,其周长为.9.10.=,因为个位数为5的数的任何次幂的个位数仍然是5,再与7相乘,其乘积的个位数还是5,所以最后结果的个位数为5.1.观察:①y=6x2;②y=-x2+