资源描述:
《自由振动的特征值问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、SolutionofeigenvalueproblemFreevibrationequationcanbeexpressedas(1)Whichrepresentasetofnsimultaneoushomogeneousdifferentialequationsofthetype(2)WeareinterestedinaspecialtypeofsolutionofEqs.,namely,thatinwhichallthecoordinatesexecutesynchronousmotion.Physically,thisimpliesamotioninwhichallthec
2、oordinateshavethesamedependence,andthegeneralconfigurationofthemotiondoesnotchange,exceptfortheamplitude,sothattheratiobetweenanytwocoordinateand,,remainsconstantduringthemotion.Mathematically,thistypeofmotioncanberepresentedby[1](3)Whereareconstantamplitudesandisafunctionoftime,thesamefuncti
3、onforallthecoordinate.Theinterestliesinthecaseinwhichthecoordinatesrepresentstableoscillation,whichimpliesthemustbebounded.InsertingEq.intoEq.andrecognizingthatthefunctiondoesnotdependontheindex,weobtain(4)Eq.canberewrittenintheform(5)Usingthestandardargument,weobtainthattheleftsideofEq.doesn
4、otdependentontheindex,whereastherightsidedoesnotdependontime,sothattworatiosmustbeequaltoaconstant,andinparticulartothesameconstant.Assumingthatisarealfunction,theconstantmustbearealnumber.Denotingtheconstantby,Eqs.yield(6)And(7)WeconsiderasolutionofEq.intheexponentialform(8)Introducingsoluti
5、oninEq.anddividingthroughby,weconcludethatsmustsatisfytheequation(9)Whichhastworoots(10)Ifisanegativenumber,thenandarerealnumber,equalinmagnitudebutoppositeinsign.Inthiscase,Eq.hastwosolutions,however,areinconsistentwithstableboundedmotion,sothatthepossibilitythatisnegativemustbediscardedandt
6、heonethatispositivemustberetained.Letting,whereisreal,Eq.yields(11)SothatthesolutionofEq.becomes(12)Becauseisarealfunction,mustbeconjugateof.Thensolutioncanbeexpressedintheform(13)WhereCisanarbitraryconstant,thefrequencyofharmonicmotionanditsphaseangle,allthreequantitiesbeingthesameforeveryco
7、ordinate.TocompletethesolutionofEqs.,wemustdeterminetheamplitude.ItsconvenienttowriteEqs.inthematrixfor(14)Eq.representstheeigenvalueproblemassociatedwithmatrixsandanditpossessesnontrivialsolutionsifandonlyofthedeterminantofthecoefficientsvan