欢迎来到天天文库
浏览记录
ID:9009855
大小:887.04 KB
页数:15页
时间:2018-04-14
《基于非凸稀疏域约束条件的tikhonov正则化方法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、基于非凸稀疏域约束条件的Tikhonov正则化方法摘要本文给出了一个奇特的正则化方法的理论分析用来解决(非线性)反问题,从而将正则化方法推广到稀疏域上。我们考察特定的Tikhonov正则化方法的稳定性和收敛性。我们将这种正则化方法用于传统的连续的空间,由于这是稀疏域上的正则化方法,所以我们将限定于0到1之间。当时三角不等式不再成立并且我们会得到一个带有非凸限制条件的伪Banach空间。我们将要证明在传统的环境下最小值的存在性,稳定性和连续性。除此之外,我们还将给出在各自的传统假设下拓扑Hilbert空间下的收敛速度。1.介绍本文是关于在稀疏域条件下正则化方法的理论分析。我们将这种方法不妨
2、设在空间上并且是非线性的算子。我们证明了Tikhonov正则化方法的解的存在性,解得稳定性,对数据扰动解的收敛性。除此之外,我们还将给出在各自的传统假设下拓扑Hilbert空间下的收敛速度。稀疏域上的反问题。我们有等式这里是一个非线性算子。为此我们将该式用Tikhonov方法表示,求该等式的最小值除了传统的正则化项,如范数,全部变量或者是最大正则化熵等方法,还有一个具有潜质的新奇的稀疏域上的正则化方法.普遍的选择设置都是基础上的延拓,例如小波扩张,傅里叶分解活着各种结构的扩张,典型地这些扩张被用于图像或者频率数据,因此本文所涉及的扩张系数通常指的是稀疏域的扩张。它可应用于各种潜在的应用。
3、比如,X线断层摄影术(CT,SPECT,PET)。这些通常的医学成像技术正是传统的反问题同时又可以通过积分算子来得出Radon变换的具体形式。这种图像重构的方法是通过基扩展来实现的,如小波和像素基,参考文献【5,6】,一个适用用的正则化方法都是引进适当的惩罚项,如范数:,这里的k能够预示小波级数的系数。与范数相比惩罚非零部分更有效。因此在这种背景下一个稀疏域的解就能够和一系列具有有限零项系数相结合。然而这种建议的范数并不总是能够提供稀疏域的解,在特殊情况下,如高维情形非线性算子就会无解。这时运用零范数就是解决问题的一个有效方法。考虑到正则化方法的过程我们更多的关注于稀疏解。然而这将会导致
4、计算量的骤然增大和无解情况的出现,很自然地我们下一步会考虑的情况范数从而增强方法的重要特点。通过运用这些引进非零项系数来抑制的增加。单位球可以形象的表示出空间随着改变的变化情况(Figure1)。随后我们用稀疏域上的正则化方法来代替在Tikhonov表达式中的传统二次项,用(伪)范数来表示。在文献【5】中的几种拓展最初设定的正则化方法和压缩landwerber迭代是两种求最小值的算法,并在【6,7,9,14】中算法又得到了进一步完善。通过【5,15,16】中关于一些稀疏域上基本正则化方法的介绍我们能够实现将该方法延拓到稀疏域上。同时【8,12,13,17-20】给出了一些当下该领域的一些
5、重要理论问题【12,13】的作者证明了一些特定的线性系统最小值解是稀疏解或者是数值近似解,在【8,17,20】中的理论是基于的稀疏tikhonov正则化方法的收敛率。在【8】中一些的结果已经额外给出。主要结果:我们研究如(2)式具有好的适定性的Tikhonov正则化非线性反问题,其中是伪范数。我们证明了传统意义下正则化非线性算子的最小解的存在性,稳定性,收敛性。因此我们用类似于求最大熵的方法。这种思想是将问题(2)转化为在凸区域上的标准的正则化问题,此外我们还给出了拓扑空间标准收敛率。2.预备知识令为(伪)Banach空间,令为可分的Hillbert空间(如空间)。其中是给定的正则化项,
6、也包含了。令是连续算子的作用区域,该区域是凸的且闭合的区域,该算子将映射到。我们在寻找适定的解来满足等式(4)通常我们得到的都是带有误差的且满足,这就造成了不适定问题的产生。因此我们关注下面广义的Tikhonov泛函其中,并且是的伪范数:,(6)其中是数列的第项。接下来代表各自的对偶量或者是对偶空间。考虑这类连续空间的明显好处就是的对偶空间当离开传统的Banach时不会发生退化现象。因此就能够得到一些好的正则化性质。由此我们定义对偶空间,。注:考虑到这个方法的结构,读者会想到一个同样的手法就像Lebesgue空间,是一个非原子度量。然而会遇到一个障碍来妨碍类似的分析。首先这个对偶空间会发
7、生退化即,。此时在上只存在唯一的连续线性函数——零函数。因此传统假设在上的弱连续算子就不再合理了,如果将q介于这种情况就会被克服,同时约束条件的解也有可能得到。此外这种经过变形的Tikhonov正则化方法是为了保证解的存在。稀疏域上的正则化方法在前面的介绍章节中大部分给定的推广到稀疏域上的正则化方法有着很广的应用背景。很多都是基的扩张因此很多都是离散的。这些应用基本上都是问题重构或者是图像问题。后面的章节主要关注的是Tikhonov
此文档下载收益归作者所有