第27讲 相似三角形性质及其应用

第27讲 相似三角形性质及其应用

ID:8746509

大小:150.50 KB

页数:3页

时间:2018-04-06

第27讲  相似三角形性质及其应用_第1页
第27讲  相似三角形性质及其应用_第2页
第27讲  相似三角形性质及其应用_第3页
资源描述:

《第27讲 相似三角形性质及其应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第27讲相似三角形性质及其应用知识点相似三角形性质,直角三角形中成比例线段大纲要求1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。考查重点与常见题型1.相似三角形性质的应用能力,常以选择题或填空形式出现,如:若两个相似三角形的对

2、应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是--------对应边上的中线之比是----------,周长之比是--------------,2.考查直角三角形的性质,常以选择题或填空题形式出现,如:如图,在RtΔABC中,∠ACB=90°,CD⊥A

3、B与D,AC=6,BC=8,则AB=--------,CD=---------,AD=----------,BD=-----------。,3.综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。预习练习1.已知两个相似三角形的周长分别为8和6,则他们面积的比是()2.有一张比例尺为14000的地图上,一块多边形地区的周长是60cm,面积是250cm2,则这个地区的实际周长--------m,面积是----------m23.有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为

4、7,则另一个三角形的周长为----------,面积是-------------4.两个相似三角形的对应角平分线的长分别为10cm和20cm,若它们的周长的差是60cm,则较大的三角形的周长是----------,若它们的面积之和为260cm2,则较小的三角形的面积为----------cm25.如图,矩形ABCD中,AE⊥BD于E,若BE=4,DE=9,则矩形的面积是-----------6.已知直角三角形的两直角边之比为12,则这两直角边在斜边上的射影之比-------------考点训练1.两

5、个三角形周长之比为95,则面积比为()(A)9∶5(B)81∶25(C)3∶(D)不能确定2.RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,那么和ΔABC相似但不全等的三角形共有()(A)1个(B)2个(C)3个(D)4个3.在RtΔABC中,∠C=90°,CD⊥AB于D,下列等式中错误的是()(A)AD•BD=CD2(B)AC•BD=CB•AD(C)AC2=AD•AB(D)AB2=AC2+BC24.在平行四边形ABCD中,E为AB中点,EF交AC于G,交AD于F,=则的比值是(

6、 )(A)2(B)3(C)4(D)55.在RtΔABC中,AD是斜边上的高,BC=3AC则ΔABD与ΔACD的面积的比值是(  )(A)2(B)3(C)4(D)86.在RtΔABC中,∠ACB=90°,CD⊥AB于D,则BD∶AD等于(   )(A)a∶b(B)a2∶b2(C)∶(D)不能确定7.若梯形上底为4CM,下底为6CM,面积为5CM2,则两腰延长线与上底围成的三角形的面积是----------8.已知直角三角形的斜边的长为13CM,两条直角边的和为17CM,则斜边上的高的长度为------

7、-------9..RtΔABC中,CD是斜边上的高线,,AB=29。AD=25,则DC=---------10.平行四边形ABCD中,E为BA延长线上的一点,CE交AD于F点,若AE∶AB=1∶3则SABCF∶SCDF=---------11.如图,在ΔABC中,D为AC上一点,E为延长线上一点,且BE=AD,ED和AB交于F求证:EF∶FD=AC∶BC12.如图,在ΔABC中,∠ABC=90°,CD⊥AB于D,DE⊥AC于E,求证:=解题指导1.如图,在RtΔABC中,∠ADB=90°,CD⊥A

8、B于C,AC=20CM,BC=9CM,求AB及BD的长2.如图,已知ΔABC中,AD为BC边中线,E为AD上一点,并且CE=CD,∠EAC=∠B,求证:ΔAEC∽ΔBDA,DC2=AD•AE3.如图,已知P为ΔABC的BC边上的一点,PQ∥AC交AB于Q,PR∥AB交AC于R,求证:ΔAQR面积为ΔBPQ面积和ΔCPQ面积的比例中项。4.如图,已知PΔABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H,求证:DE2=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。