欢迎来到天天文库
浏览记录
ID:20680866
大小:13.54 MB
页数:9页
时间:2018-10-14
《第27讲图形的相似》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第27讲 图形的相似考试-目标锁定考纲要求备考指津1.了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2.了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用.3.了解位似变换和位似图形的概念,掌握并运用其性质. 相似多边形的性质是中考考查的热点,其中以相似多边形的相似比、面积比、周长比的关系考查较多.相似三角形的判定、性质及应用是考查的重点,常与方程、圆、四边形、三角函数等相结合,进行有关计算或证明.基础自主导学考点一 比例线段1.比例线段的定义:在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即
2、(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.2.比例线段的性质:(1)基本性质:=ad=bc;(2)合比性质:==;(3)等比性质:若==…=(b+d+…+n≠0),那么=.3.黄金分割:点C把线段AB分成两条线段AC和BC,如果=,则线段AB被点C黄金分割,点C叫线段AB的黄金分割点,AC与AB的比叫做黄金比.考点二 相似多边形1.定义:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比,相似比为1的两个多边形全等.2.性质:(1)相似多边形的对应角相等,对应边成比例;(2)
3、相似多边形周长的比等于相似比;(3)相似多边形面积的比等于相似比的平方.考点三 相似三角形1.定义:各角对应相等,各边对应成比例的两个三角形叫做相似三角形.2.判定:(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)斜边和一条直角边对应成比例,两直角三角形相似.3.性质:(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;
4、(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方考点四 图形的位似1.定义:如果两个图形仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这两个图形叫位似图形.这个点叫做位似中心,这时的相似比称为位似比.2.性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.画位似图形的步骤(1)确定位似中心点;(2)连接图形各顶点与位似中心的线段(或延长线);(3)按位似比进行取点;(4)顺次连接各点,所得的图形就是所求图形.1.若=,则=( ).A.B.C.D.2.如图所示的两个四边形相似,则∠α的度数是
5、( ).A.87° B.60°C.75°D.120°3.如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=__________.4.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是__________.5.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.规律
6、-方法探究一、相似图形的性质【例1】如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ).A.2cm2B.4cm2C.8cm2D.16cm2解析:根据相似多边形面积的比等于相似比的平方,得=()2,=,S阴影=8(cm2).答案:C相似多边形的性质:对应边成比例,对应角相等,周长的比等于相似比,面积的比等于相似比的平方,利用相似多边形的性质可求多边形的边长、角、周长或面积.二、相似三角形的性质与判定【例2】如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE
7、.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.解:(1)△ABC∽△ADE,△ABD∽△ACE.(2)①证明△ABC∽△ADE.∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE.又∵∠ABC=∠ADE.∴△ABC∽△ADE.②证明△ABD∽△ACE.∵△ABC∽△ADE,∴=又∵∠BAD=∠CAE,∴△ABD∽△ACE.判断两三角形相似时,首先看是否存在两对对应角相等;若只有一对对应角相等,再看夹这个角的两边是否成比例;若无内角相等,就考虑三组对应边是否成比例.如图
8、,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.(1)求证:△ABD∽△CED.(2)若AB=6,AD=2CD,
此文档下载收益归作者所有