欢迎来到天天文库
浏览记录
ID:8673544
大小:1.87 MB
页数:20页
时间:2018-04-04
《第13章《轴对称》全章学案人教版八年级上册数学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十三章 轴对称13.1 轴对称13.1.1 轴对称1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.2.能识别简单的轴对称图形及其对称轴.重点:轴对称与轴对称图形的概念.难点:轴对称与轴对称图形的性质.一、自学指导自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟)总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条
2、直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.(2)MN与线段AA′的关系为MN垂直平分线段AA′.总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)成轴对称的两个图形是全等形.(3)如果两个图形关于某条直
3、线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图所示的图案中,是轴对称图形的有A,B,C,D.2.下列图形中,不是轴对称图形的是(D)A.角 B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起成轴对称B与F,C与D.4.轴对称与轴对称图形有什么区别与联系?答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.小组讨论交流解题思路
4、,小组活动后,小组代表展示活动成果.(10分钟)探究1 下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.①等边三角形;②正方形;③圆;④平行四边形.解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.点拨精讲:对称轴是一条直线.探究2 如图,△ABC和△ADE关于直线l对称,若AB=2cm,∠C=80°,则AE=2_cm,∠D=80°.点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.指出下列哪组
5、图形是轴对称,并指出对称轴.①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.2.下列两个图形是轴对称关系的有A,B,C.3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、白方块的个数要相同)(3分钟)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴
6、是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2 线段的垂直平分线的性质(1)1.理解线段垂直平分线的性质和判定,并会运用此性质解决问题.2.会用尺规作图过直线外一点作已知直线的垂线.重、难点:线段垂直平分线的性质和判定定理的理解与运用.一、自学指导自学1:自学课本P61页“探究”,理解线段垂直平分线的性质与判定定理,完成下列填空.(5分钟)1.如图,l⊥AB,垂足为C,AC=BC,则△PAC≌△PBC,PA=PB.2.如图,PA=PB,若PC⊥AB,垂足为C,则
7、AC=BC;若AC=BC,则PC⊥AB.总结归纳:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(3)线段的垂直平分线是到线段两个端点的距离相等的点的集合.自学2:自学课本P62页“例1”,掌握经过已知直线外一点作这条直线的垂线的方法.(5分钟)如图,A,B,C三点表示三个村庄,为了解决村民子女就近入学的问题,计划新建一所小学,要使学校到三个村庄距离
此文档下载收益归作者所有