欢迎来到天天文库
浏览记录
ID:8603969
大小:148.00 KB
页数:5页
时间:2018-04-03
《2017浙教版数学八年级上册2.7《探索勾股定理》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、探索勾股定理教学目标1体验勾股定理的探索过程,掌握勾股定理;2会用勾股定理解决简单的几何问题;3让学生经历动手操作实验观察、归纳、猜想、验证发现勾股定理的过程,培养学生探究能力,发展学生数形结合的数学思想方法。4通过引导学生动手操作、观察发现、大胆猜想、自主探究、合作交流,激发学生的探究欲,使学生获得成功的体验,增强自信心,提高学习数学的兴趣;培养学生的爱国主义精神。教学重点勾股定理教学难点勾股定理的证明设计亮点突出学生的动手操作能力教学过程备注创设情境导入新课利用《九章算术》中的古题:“在《九章算术》中记载了一道有趣的数学题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐
2、.问水深、葭长各几何?”这道题的意思是说:有一个边长为1丈的正方形水池,在池的中央长着一根芦苇,芦苇露出水面1尺。若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?”导入新课。【设计说明】此题虽为古代数学题,但却是学生生活中常见的问题。提出问题,但并不急于解决,意在激发学生的求知欲望。动手探索发现定理(1)在方格纸上(方格边长为1cm),作三个直角三角形,使其顶点在格点上且两条直角边长分别为3cm和4cm,6cm和8cm,5cm和12cm;(2)分别测量这三个直角三角形斜边的长;(3)根据所测得的结果填写课本P38页的表格。(4)观察表中后两列的数据。猜想在直角
3、三角形中,三边长之间有什么关系?得出猜想后提出:(5)再任意画一个直角三角形试一试。得出:有必要来验证一下所得猜想的正确性。【设计说明】通过已知具体边长的直角三角形的画图、测量、计算、比较,得出猜想,意在锻炼学生的归纳、概括能力。继而通过画边长任意的直角三角形检验猜想,目的是为了激发学生的质疑能力和探究欲望,培养学生的探索能力。形成“通过特例实验得出猜想,但结论的准确性和普遍适用性,必须经过理论验证”的探究新领域的科学研究思想方法。操作活动验证定理(1)小组合作活动拼图游戏:请每一小组拿出四个全等的直角三角形纸片:假设三角形的两直角边分别为a、b,斜边为c。你们能用这四个三角形纸片,
4、围出一个正方形吗?【设计说明】此处对教材进行了处理,没有给出教材P39的图2-21。设计意图是希望学生的思维不受给定图形的影响,完全处于开放状态。以培养学生积极动手、大胆尝试、勇于挑战的精神和创新能力。并通过实际操作感知三角形面积与所围出的正方形面积的关系,为下一步理论验证打好伏笔。(2)探求所拼图形的面积关系,启发学生验证所得猜想。【设计说明】用面积法来证明勾股定理有一定的难度,但这种思维方式在平方差和完全平方公式的证明中已初步接触过,教师可以引导学生回顾这种方式,启发学生观察所拼图形中哪几部分的面积易计算,并寻找相互之间有何关系。通过小组合作,形成验证思路。(3)学生自主归纳定理
5、,教师介绍勾股定理的历史。【设计说明】让学生了解勾股定理的中外史,激发学生的爱国主义情怀。4、应用定理解决问题例1、已知在△ABC中,∠C=Rt∠,BC=a,AC=b,AB=C(1)若a=1,b=2,求c;(2)若a=15,c=17,求b;强调:(1)公式中字母的意义;(2)解题格式;(3)平方差公式的应用。巩固练习:课内练习1【设计说明】通过简单的计算,直接巩固勾股定理的有关内容。AB409016040例2、如图:是一个长方形零件图,根据所给的尺寸,求两孔中心A、B之间的距离。巩固练习:解决情境问题【设计说明】意在让学生学会利用勾股定理解决实际问题,并渗透方程思想,明白利用勾股定理
6、结合方程思想是解决代数问题的常用手段。(1)abc4个acbbaccccbaa-ba-babc4个(2)例3、利用作直角三角形,在数轴上表示点。巩固练习:课内练习2【设计说明】例3是教材中的课内练习3,是勾股定理的几何应用,但难度较大,学生较难形成思路。教师需要作些启发和解题示范,但仍以学生为主采用提问式启发,帮助学生形成解题思路。5、归纳小结反馈信息学生谈体会;(2)教师小结【设计说明】引导学生小结本节重要的知识和思想方法,让学生谈谈自己的感受,增强学生自信心,发挥课堂自我评价的作用。6、布置作业巩固提高书面作业:(1)必做:教材作业题A组(2)选做:教材作业题B、C组实践作业:收
7、集日常生活中可用勾股定理来解决的实际问题,并以数学日记的形式进行收藏。【设计说明】分层布置作业可以因材施教,让水平不同的学生得到不同的发展。实践作业的布置,意在鼓励学生自己主动在现实中寻找用数学知识和数学思想方法解决问题的机会,并努力去完成,以激发学生课外学习的兴趣。板书设计:作业安排:教学反思:上课日期总课时教学目标1掌握勾股定理的逆定理的内容及应用.2会应用勾股定理的逆定理来判断直角三角形.3了解我国古代数学家的伟大成就,激发学生热爱祖国的思想和求知欲
此文档下载收益归作者所有