欢迎来到天天文库
浏览记录
ID:83545735
大小:624.88 KB
页数:6页
时间:2024-08-31
《山西省晋中市2022-2023学年高一下学期期中数学 Word版无答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
高一数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中真命题的个数是()(1)温度、速度、位移、功都是向量(2)零向量没有方向(3)向量的模一定是正数(4)直角坐标平面上的x轴、y轴都是向量A.0B.1C.2D.32.已知两个单位向量的夹角是,则()A.1B.C.2D.3.设(其中为虚数单位),若为纯虚数,则实数()A.B.C.D.4.下列说法正确的是()A.直四棱柱是长方体B.有两个面互相平行,其余各面都是平行四边形的多面体是棱柱C.正方体被一个平面截去一个角之后可以得到一个简单组合体D.台体是由一个平面截锥体所得的截面与底面之间的部分5.在中,为的中点,与交于点,则() A.B.C.D.6.“升”和“斗”是旧时量粮食器具,如图所示为“升”,是一个无盖的正四棱台,据记载:它上口15厘米,下口12.5厘米,高10厘米,可容米1公斤.该“升”的容积约是()(约定:“上口”指上底边长;“下口”指下底边长.)A.B.C.D.7.已知向量,,满足,,,则的最小值为()A.B.C.D.8.如图所示,设是平面内相交成角的两条数轴,分别是与轴正方向同向的单位向量,称此平面坐标系为斜坐标系.若,则把有序数对叫做向量的斜坐标,记为.在的斜坐标系中,若向量,则下列结论正确的是()A. B.C.D.向量与可作为该平面的一个基底二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图所示,是线段上的两个三等分点,则下列关系式正确的是()A.B.C.D.10.已知复数满足(其中虚数单位),则()A.的实部为B.的虚部为C.复数在复平面内对应的点位于第四象限D.的共轭复数为11.如图所示,一个平面图形的直观图为,其中,则下列说法中正确的是()A.该平面图形是一个平行四边形但不是正方形B.该平面图形的面积是8C.该平面图形绕着直线旋转半周形成的几何体的体积是D.以该平面图形为底,高为3直棱柱的体对角线长为12.已知对任意角均有等式.设的内角满足 ,面积满足.记分别为角的对边,则下列式子中一定成立的是()A.B.CD.三、填空题:本题共4小题,每小题5分,共20分.13.向量在向量上的投影向量__________.14.已知在复平面内,向量对应的复数是对应的复数是,则向量对应的复数是__________.15.已知中,角所对的边分别为,那么面积的取值范围是__________.16.如图所示,一块边长为10cm的正方形铁片上有四块阴影部分,将这些阴影部分裁下来,然后将余下的四个全等的等腰三角形组成一个正四棱锥、若正四棱锥的各顶点都在同一球面上,底面边长为单位:,且,则该球的半径(单位:)的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数为虚数单位.(1)若,求;(2)若是关于的实系数方程的一个复数根,求.18.已知平面直角坐标系中,向量.(1)若,且,求向量的坐标;(2)若与的夹角为__________,求实数的取值范围. 请在如下两个条件中任选一个,将问题补充完整,并求解(如果两个条件都选则按第1个的答题情况给分):①锐角;②钝角.19.一条河南北两岸平行.如图所示,河面宽度,一艘游船从南岸码头点出发航行到北岸.游船在静水中的航行速度是,水流速度的大小为.设和的夹角为,北岸上的点在点的正北方向.(1)若游船沿到达北岸点所需时间为,求的大小和的值;(2)当时,游船航行到北岸的实际航程是多少?20.中,,,,.(1)若,,求长度;(2)若为角平分线,且,求的面积.21.中,分别在边上,且.(1)求与所成锐角的余弦值;(2)在线段上是否存在一点,使.若存在,求的值;若不存在,请说明理由.22.南北朝时期的伟大科学家祖暅,于五世纪末提出了体积计算原理,即祖暅原理:“夫叠棋成立积,缘幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么,这两个几何体的体积相等.其最著名之处是解决了“牟合方盖”的体积问题.如图所示,正方体,棱长为.(1)求图中四分之一圆柱体的体积; (2)在图中画出四分之一圆柱体与四分之一圆柱体的一条交线(不要求说明理由);(3)四分之一圆柱体与四分之一圆柱体公共部分是八分之一个“牟合方盖”.点在棱上,设.过点作一个与正方体底面平行的平面,求该截面位于八分之一“牟合方盖”内部分的面积;(4)如果令,求出八分之一“牟合方盖”的体积.
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处