In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -

In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -

ID:81816712

大小:2.40 MB

页数:9页

时间:2023-07-21

上传者:U-14522
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第1页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第2页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第3页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第4页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第5页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第6页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第7页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第8页
In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -_第9页
资源描述:

《In fl uence of Dynamic Disorder and Charge − Lattice Interactions on Optoelectronic Properties of Halide Perovskites - Munson, Asbury -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCPerspectiveInfluenceofDynamicDisorderandCharge−LatticeInteractionsonOptoelectronicPropertiesofHalidePerovskitesKyleT.MunsonandJohnB.Asbury*CiteThis:J.Phys.Chem.C2021,125,5427−5435ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Theoriginsofmanyuniquepropertiesofhalideperovskitesemiconductorscanbetracedtocharge−latticeinteractionsthatleadtolargepolaronformationcombinedwiththeirunusualelectronicstructureofdefects.However,theabilitytounderstandandcontroltheinterplayoftheseelectronicstateswithdynamicdisorderarisingfromstructuralfluctuationsofthemetalhalideframeworkisneededtoguidecontinueddevelopmentofnewvariantsofthesematerials.InthisPerspective,weexaminetheinfluencethatdynamicdisorderhasoncharge−latticeinteractionsinhalideperovskitematerialsthatleadtochargelocalizationandlargepolaronformation.Furthermore,wedescribehowtheinterplayofmaterialcomposition,structuraldynamics,andlargepolaronformationinfluencesradiativeandnonradiativeband-edgerecombination.Insightsabouthowtocontrolthisinterplaymayinformdevelopmentofrelatedmetalhalidesemiconductorsincluding2DRuddlesden−Popper,doubleperovskite,andnanocrystallinesystemswithtailoredradiativeandchargetransportpropertieswhileavoidingtoxicelements.25■INTRODUCTIONperovskites.Consistentwiththishypothesis,recenttheoreti-Theextraordinaryperformanceofhalideperovskite-basedcalworkhassuggestedthatthelatticefluctuationsthatleadtophotovoltaicsismainlyduetothelownonradiativepolaronformationmaygeneraterepulsiveinteractionsbetween12oppositelychargedcarriers.11Latticefluctuationsmayalsorecombinationrates,micrometercarrierdiffusionlengths,3,4affectthecoolingratesofabove-bandgap“hot”carriersandmicrosecondcarrierlifetimesexhibitedinthismaterial26,27class.Thesepropertiesenablehalideperovskitephotovoltaicfollowingopticalexcitation.Inparticular,theformationdevicestoexhibithighopen-circuitvoltagesdespitebeingoflargepolaronsmaysuppressthecarrierscatteringeventsthatprocessedfromsolution.5Halideperovskitesalsopossessother28leadtocarriercoolinginhalideperovskites.DownloadedviaBUTLERUNIVonMay16,2021at12:27:09(UTC).favorableoptoelectronicproperties,suchassmallexcitonTheabovereportshighlighttheneedtounderstandthe67bindingenergiesandhighabsorptioncoefficients,makinginterplaybetweendynamicdisorderduetofluctuationsofthethemidealmaterialsforawidevarietyofoptoelectronic12,218,9perovskitelatticeandthecharge−latticeinteractionsthatapplicationsbeyondphotovoltaicssuchaslasersand21−2410leadtopolaronformationFurthermore,theexactnatureLEDs.Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.ofthecharge−latticeinteractions,howtheyaremodulatedbyThereisgrowingconsensusintheliteraturethatcharge−latticeinteractionscausechargecarrierstoself-trapintolargetheunderlyingstructureandcomposition,andhowtheseinpolaronicstatesandthatthesestatesfigureprominentlyintheturnaffecttheoptoelectronicpropertiesofmetalhalideremarkableoptoelectronicpropertiesofhalideperovskiteperovskiteshasnotbeenfullyelucidated.Suchknowledge11−20materials.Forexample,contemporaryworkusingfar-IR,willbecriticalforunderstandinghowthereduceddimension-terahertz,orRamanspectroscopytoexaminepolaronalityandmodifiedcrystalstructuresofmetalhalidesemi-frequenciesandestimatesofdielectricpropertiesandcarrierconductorssuchas2DRuddlesden−Popper29−31anddoubleeffectivemassesdemonstratesthatthiscouplingiswellperovskitematerials32−34influencetheirlightemittinganddescribedbyFröhlich-typeinteractionsofchargeswithpolaroptoelectronicproperties.phononmodesinmethylammoniumleadhalideperov-21−24skites.Thesepolaronicstatesareconsideredtobe“large”inhalideperovskitesbecausethepolarizationcloudReceived:December5,2020createdbydistortionsoftheperovskitelatticearoundchargeRevised:February5,2021carriersspanseveralunitcells.20Published:February16,2021Theformationoflargepolaronsisthoughttobetheoriginoftheslowsecondorderrecombinationratesandmoderatechargecarriermobilitiesexhibitedinthree-dimensional©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c108895427J.Phys.Chem.C2021,125,5427−5435

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectiveInthisPerspective,wedescriberecentexperimentalstudiestheperovskitestructure;however,chloride(Cl−)anionsalsothatusedtemperature-dependent,mid-infraredtransienthavebeenused.Interestingly,thecompositionofstate-of-the-absorption(mid-IRTA)spectroscopyandtime-resolvedartperovskitedevicescommonlyincludesseveraldifferentA-photoluminescence(TRPL)spectroscopytoexaminethesitecations,B-sitemetalions,andX-sitehalideionssuchas5effectoflargepolaronformationonband-edgerecombinationFA0.79MA0.16Cs0.05Pb0.85Sn0.15I2.5Br0.5.inhalideperovskitesatcarrierdensitiescloselymatchedtoInstarkcontrasttootherinorganicsemiconductorssuchasthoseofoperatingphotovoltaicdevicestominimizehigherSiandGaAs,thehalideperovskitelatticeismechanicallysoftorderrecombinationartifacts.Wethenhighlightrecent12anddynamicallydisordered.Avarietyofexperimentalmeasurementsofthestructuralfluctuationsthatarecorrelatedmethodshavebeenusedtoexaminetheanharmonicnaturewithlargepolaronformationusingmid-IRTAspectroscopyto14,37,38oftheperovskitelattice.Forexample,Ramanspectros-probethevibrationaldynamicsofthehalideperovskitelattice.copyandmoleculardynamicssimulationshaveshownthattheFurthermore,weexaminetheinfluencethatvariousA-sitelow-frequencyvibrationalmodesoftheperovskitelattice’sBX3cationshaveonthedynamicsoflargepolaronformationandframeworkundergolargeamplitudedisplacementsatroomtheirdelocalizationlengths,bindingenergies,andinfluenceontemperature.39Likewise,neutrondiffractionmeasurementschargerecombinationusingaseriesofleadbromideperovskitealsohavebeenusedtoinvestigatethestructuraldynamicsoffilms.Finally,wediscusshowthecharge−latticeinteractionstheperovskitelattice.40Figure1BshowstherefinedstructurethatleadtopolaronformationmaybemodifiedbyionofaMAPbI3perovskitesinglecrystalobtainedfromneutronsubstitutionandsuggestfuturestudiesusingmid-IRTAdiffractionmeasurements.Thestructurehighlightstheatomicspectroscopythatcanbeusedtobuildstructure−functiondisplacementsoftheiodineatomsthatarisefromthecorrelationstopredicthowthecompositionsofnewmetalanharmonicnatureoftheperovskitelatticeatroomtemper-halidesemiconductorsinfluencetheiroptoelectronicandlightature.Thesedisplacementsarerepresentedasellipsoidsinthe29−34emittingproperties.figure.ThestructurealsohighlightsthedisorderednatureoftheMAcations,whichappearasa“sphere”inthecenterofthe■RESULTSANDDISCUSSIONBX3framework.Organiccationsinhybridorganic−inorganicperovskites,Thethree-dimensionalhalideperovskitesutilizedinstate-of-the-artphotovoltaicdevicesshareacommonABXstructuresuchasMAPbI3,interactwiththematerial’sinorganic3frameworkmainlyviaion−ion,ion−dipole,andhydrogenwhereAisamonovalentcation,Bisadivalentmetalion,and4135,36bondinginteractions.However,inthehigh-temperatureXisahalideanion(Figure1A).TheA-siteionsusedtotetragonalandcubicphasesofthematerial,theseinteractionsformhalideperovskitesaretypicallyeithersmallorganic42arenotstrongenoughtoimmobilizetheorganicions.Asamolecules,suchasmethylammonium(MA)andformamidi-result,organiccationscanrotaterapidlywithintheperovskitenium(FA),orinorganicions,suchascesium(Cs).Lead(Pb)andtin(Sn)arecommonlyusedastheB-sitemetalion.Iodidelattice’sBX3framework.Numerousexperimentalreportshave(I−)andbromide(Br−)anionstypicallyoccupytheXsiteofexaminedtherotationaldynamicsoforganiccationsinhalideperovskites.Forexample,polarization-resolvedtwo-dimen-sionalinfrared(2DIR)spectroscopywasusedtoinvestigate43,44therotationalmotionofMAionsinhalideperovskites.Fromthesemeasurements,theauthorsdeterminedthatMAcationsinMAPbI3perovskitefilmsundergotwodistinctwobbling-in-cone(∼0.3ps)androtationalmotions(∼3ps),respectively(Figure1C).Similardynamicsalsowereobtainedfrompolarizationresolved2DIRmeasurementsofFAionsin45FAPbI3thinfilms.Formoreinformationabouttherotationaldynamicsoforganiccations,wedirectthereadertoarecent42perspectivefromBakulinandco-workers.ThedisorderednatureofboththeinorganicBX3frameworkandA-sitecationshasledseveralinvestigatorstoproposethatfluctuationsoftheperovskitelatticeunderpintheremarkableoptoelectronicpropertiesexhibitedinthisclassofmateri-46−48al.Evidenceforcharge−latticeinteractionsarisingfromelectron−phononcouplinginhalideperovskiteshasbeen49obtainedfromtemperature-dependentPL,chargecarrier18,4750Figure1.(A)Representationoftheperovskiteunitcelldepictingthemobility,two-dimensionalelectronicspectroscopy,and23,51inorganicAX3frameworkandthestructureofcommonAsitecationsTHzmeasurements.Suchexperimentsledinvestigatorstousedinstate-of-the-artdevices.Reprintedwithpermissionfromrefproposethatfluctuationsoftheperovskitelatticecausecharge28.Copyright2016AmericanChemicalSociety.(B)Refinedcarrierstoself-trapintolargepolaronicstateswithinthestructureofaMAPbI3singlecrystalobtainedfromneutrondiffractionmaterial.12,20,25Thesestudiesalsorevealedthatthecharge−measurements.Thestructurehighlightsthedisorderednatureofthelatticecouplinginmetalhalideperovskitesisrelativelyweak,perovskite’sMAcationsandthelargedisplacement(ellipsoids)oftheconsistentwithFröhlich-typeinteractionsofchargecarriersmaterial’shalideions.Reprintedwithpermissionfromref40.21−24withpolarLOphonons.TheformationoflargepolaronsCopyright2015RoyalSocietyofChemistry.(C)Cartoon12,20representationoftherotationalmotionofMAcationsinhalideprolongstherecombinationlifetimesofchargecarriersandperovskites.Reprintedwithpermissionfromref42.Copyright2018mayalsoshieldchargecarriersfromdefectswithinthe52AmericanChemicalSociety.material.Itislikelythatthesepropertiesfacilitatetheability5428https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectivetodeposithigh-performancehalideperovskitematerialsusingaenergyandaDrude-likefreecarrierabsorptiontailathigher5358varietyofsolution-processeddepositionmethods.transitionenergies.TheoriginofthisbehaviorcanbetracedTheconnectionbetweenthestructuralandelectronictoacombinationofshortandlong-rangecharge−latticepropertiesofhalideperovskiteshasencouragedstudiesthatinteractionsthatdefinethekineticandpotentialenergiesofinvestigatethedynamicsofchargecarriersinthesematerialschargecarriersinteractingwiththeirself-generatedpolarization35,54followingphotoexcitation.However,ithasbeenchalleng-cloudsintheinorganicsublattice.ThespectrumappearinginingtodrawdirectcorrelationsbetweenstructuralfluctuationsFigure2AalsoshowsnarrowvibrationalfeaturesoftheMAandpolarondynamicsusingtraditionalspectroscopictechni-cationswithintheMAPbI3film.Thesevibrationalfeaturesques,suchasTRPLalone.Inpart,thisisduetoTRPLserveasdirectprobesofthestructuraldynamicsofthemeasurementsbeingaffectedonlyindirectlybynonradiativeperovskitelatticeinthepresenceofchargecarriers.recombinationpathwaysamongtheband-edgestatesoftheConsequently,analysisofthesevibrationalfeaturesenabledmaterialandbecausenumerousprocessescancontributetothetheinvestigatorstoobtainmechanisticinformationaboutthe55observedspectraandkinetics.structuraloriginofpolaronformationinhalideperovskiteRecently,advancesinmid-IRTAspectroscopyhaveenabledoptoelectronicmaterials.Themeasurementsoftheexcited-thetechniquetobeusedtodirectlyprobethespectroscopicstatevibrationaldynamicsoftheperovskitelatticearesignaturesoflargepolaronsinhalideperovskitesatlowdiscussedbelow.photogeneratedchargecarrierdensities(3×1016cm−3)Theabilitytomeasurethedynamicsoflargepolaronsatlow212followingopticalexcitationat532nmand500nJ/cm.excitationdensitiesenabledtheirdynamicstobedirectlyTheseexcitationconditionsproducetransientcarrierdensitiescomparedtoTRPLmeasurementsunderidenticalconditionsthatcloselyresemblecarrierdensitiesthatoccurundersteady-12(Figure2B).Figure2Cdisplaysnormalizedrecombination56,57statesolarillumination,allowingthedynamicsoflargekineticsoflargepolarons(fromtheirmid-IRabsorptions)polaronstobemeasuredunderconditionsrelevanttocomparedwiththenormalizedPLdecaysofaMAPbI3filmfunctioningoptoelectronicdevices.Figure2Ashowsthemeasuredunderidenticalconditions(532nm,500nJ/cm2excitationdensity)at190and290K.WenotethatanalysisoftheshapesofthelargepolaronabsorptionspectraappearinginFigure2Aasafunctionoftemperatureallowedinvestigatorstodeterminethatthedelocalizationlengthoflargepolaronsdecreasedfrom∼11nmat190Kto∼9nmat290K,indicatingthatchargecarriersweremorespatiallylocalizedat20highertemperatures.Thus,comparingthelargepolaronandTRPLdecaykineticsallowedtheeffectsofcarrierlocalizationonband-edgerecombinationtobedetermined.Atlowertemperature(190K),wherechargecarriersaremoredelocalized,theTRPLdynamicsexhibitedband-edgeemissioninquantitativeagreementwiththedynamicsofchargecarriersprobedusingmid-IRTAspectroscopy(Figure2C,left).However,atroomtemperature(290K),thelifetimeofchargecarriersprobedinthemid-IRincreased20-foldrelativetothelowertemperaturemeasurementanddeviatedfromtheradiativerecombinationkineticsmeasuredusingTRPLunderthesameconditions(Figure2C,right).Theseresultsarealsoconsistentwithtemperature-dependent20measurementsofbimolecularrecombinationcoefficients,Figure2.(A)Mid-IRTAspectrumoflargepolaronsinahalidewhichshowedthatchargecarrierlocalizationalsodecreasesperovskitefilmmeasuredata30nstimedelayfollowingbandgapexcitation.Theinsetshowsthetransitionsthatappearinthebimolecularrecombinationrateswithinthematerial.spectrum.(B)SchematicshowingTRPLandTRIRmeasurementsTheabovecomparisonrevealsthatthelocalizationofchargeperformedunderidenticallowexcitationdensityconditions.(C)carriersintolargepolaronicstatesatelevatedtemperaturesTRPLdecayversusmid-IRTArecombinationkineticsmeasuredatslowschargecarrierrecombinationwithinthematerial.290K(right)and190K(left)plottedonalogarithmictimeaxis.TheHowever,theformationoflargepolaronsalsoquenchesmid-IRTAandTRPLdecaykineticsmatchwithinexperimentalphotoluminescence(Figure2C,ref12).Thus,whilepolaronprecisionatlowertemperaturebutdeviateathighertemperatureformationmaybeadvantageousforphotovoltaicdevicesduebecauseofcarrierlocalizationcausedbycharge−latticeinteractionstoprolongedchargecarrierlifetimes,itmayhinderthethatareenhancedbydynamicdisorderatelevatedtemperatures.59efficienciesofperovskite-basedLEDs.Forexample,theReprintedwithpermissionfromref12.Copyright2018Elsevier.efficienciesoflightemittingdiodesfabricatedusingtwo-59dimensional(2D)lead-halideperovskitesaretypicallylowlargepolaronspectraobtainedfrommid-IRTAspectroscopyand,insomecases,canonlybemeasuredatcryogenic60,61measurementsofapolycrystallineMAPbI3filmfollowinga30temperatures.Thesepoorefficienciesmaybedueto12nstimedelayafterbandgapexcitation.Suchpolycrystallineenhancedelectron−phononinteractionsandpolaronforma-MAPbI3filmswillbecalledsimplyMAPbI3filmshereandintionwithinthematerial,whichhasbeenreportedpreviouslyby16thefollowing.TheinsetofFigure2AshowsthetransitionsthatSilvaandco-workers.However,certainintrinsicdistortionsappearinthespectrum.Theabsorptionspectraoflargeinlowdimensionalhalideperovskitescanleadtopolaronic29,30polaronsarecharacterizedbyasharpabsorptiononsetataexcitonswithefficientbroadbandemission.Thesetransitionenergythreetimesthelargepolaronself-trappingobservationsunderscoretheneedtounderstandtheinterplay5429https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectiveofsuchpolaroniceffectsonexcitedelectronicstatestopredictUnliketheFTIRspectra,boththecenterfrequencyandlineandcontroltheelectronicpropertiesofhalideperovskites.widthoftheN−HbendmodechangewithtemperatureintheBecausetheformationoflargepolaronsinhalideperovskitesexcitedelectronicstate.TheN−Hbendvibrationsoftheslowschargerecombinationandquenchesphotoluminescence,excitedelectronicstatewerefitwithLorentzianfunctionstomodifyingthecharge−latticeinteractionsthatleadtopolaronquantifythechangesintheirlinewidths.ThebestfitfunctionsformationmayallowinvestigatorstotunetheoptoelectronicareoverlaidonthevibrationalspectrashowninFigure3A.Thepropertiesofhalideperovskitesforspecificapplications,suchincreaseinthelinewidthofthevibrationalmodeat310Kaslight-emittingdiodesandlasers.Tothisend,severalindicatesfastervibrationaldephasingoftheN−Hbendinvestigatorshaveexaminedtheexcited-statephonondynam-vibrationalmodeintheexcitedelectronicstateatelevated14icsinlead-halideperovskitesthatleadtopolaronformation.temperatures.ThesefastervibrationaldephasingdynamicsForexample,time-domainRaman(TDR)measurementsofaoriginatefromstructuraldistortionsoftheperovskitelatticeMAPbBr3filmcollectedafterexcitationofthematerial’sthatchangethehydrogenbondingandion−dipoleinteractionsbandgapusingultrashortlaserpulsessuggestedthatthebetweenMAcationsandthematerial’sPbI−inorganic3presenceofphotogeneratedchargecarriersshiftsthe20framework.equilibriumpositionsandvibrationalenergiesoftheperovskiteThefastervibrationaldephasingdynamicsobservedin24lattice.Likewise,timedomainopticalKerreffect(OKE)Figure3Aatelevatedtemperatureswerecorrelatedwiththespectroscopyhaspreviouslybeenusedtoprobetherelaxationself-trappingofchargecarriersintolargepolaronicstates.oftheperovskitelattice’sPb−XmodesfollowingopticalFigure3Bshowstemperature-dependentpolaronabsorption13excitation.spectracollectedunderthesameexperimentalconditionsasAsstatedabove,mid-IRTAspectroscopyisalsocapableof12thevibrationaldynamics.Thetemperature-dependentstudymeasuringtheexcitedstatevibrationaldynamicsthatarerevealsthattheintensityofthemid-IRpolaronabsorptioncorrelatedwithpolaronformationinhalideperovskites.Figurefeatureincreasedasthetemperaturewasraised,indicatingthat3Adisplaysbaselinecorrectedmid-IRTAspectraofaMAPbI3largepolaronformationisenhancedatelevatedtemperatureswhentheperovskitelatticeundergoeslargeramplitudefluctuations.ThisincreaseoflargepolaronformationwasassociatedwithacorrespondingdecreaseoftheradiativequantumyieldatelevatedtemperaturesfromTRPLmeasure-12ments.TheTRPLandmid-IRTAmeasurementswereconductedwiththesameexcitationintensitiesatalltemper-atures,allowingquantitativecomparisonofthechangesofradiativeefficiencieswiththevariationofthedensitiesoflargepolarons.Takentogether,theseresultsindicatethattemper-aturedependentanharmonicfluctuationsoftheperovskitelatticeenhancethecharge−latticeinteractionsthatunderpinpolaronformationandrecombinationmechanismsintheexcitedstateofthisclassofmaterial.Becausepolaronformationdependsonthestructuraldynamicsofthehalideperovskitelattice,severalreportshaveFigure3.(A)Baselinecorrectedmid-IRTAspectraofaMAPbI3filminvestigatedtheinfluencethatthematerial’sA-sitecationsandinitsexcitedelectronicstatecollectedat190and310KfollowinginorganicBX3frameworkhaveonpolaronformationandbandgapexcitationat532nm.ThespectrahighlighttheN−Hbendrecombinationmechanisms.Bothcomputationalandexper-regionofthefilm.ThesmoothcurvesthroughthedatarepresenttheimentalreportshavesuggestedthatthemotionofdipolarLorentzianfunctionsusedtoquantifythefullwidthathalf-maximumorganiccationsaffectspolaronformation,transport,andofthevibrationalfeatures.CorrespondingFTIRspectraareshown25,63−68recombinationinhalideperovskites.Forexample,thebelowthemid-IRTAspectraforcomparison.ReprintedwithorientationalmotionofFAcationsinFAPbI3filmswaspermissionfromref20.Copyright2019AmericanChemicalSociety.suggestedtoinfluencetheelectronicpropertiesofhalide(B)PolaronabsorptionspectraofaMAPbI3filmmeasuredatdifferenttemperaturesfollowingbandgapexcitation.Thedensityofperovskitesonthebasisoftemperature-dependentphoto-63absorbedphotonswasidenticalforalltemperatures,indicatingthatluminescencemeasurements.However,temperature-depend-theincreaseinamplitudeofthelargepolaronspectraatelevatedentRamanspectroscopymeasurementsrevealedthatthepolartemperaturesisduetoenhancedpolaronformation.Reprintedwithfluctuationsthatunderpinpolaronformationinhalidepermissionfromref12.Copyright2018Elsevier.perovskitesdonotdependonthedipolemomentofthe39material’sA-sitecation.filmcollectedintheMAcation’ssymmetricN−HbendregionToaddresswhetherthedipolarmotionofA-sitecations20influenceschargecarrierdynamicsinhalideperovskites,measuredat310and190K.Thevibrationalfeaturesdepictedinthemid-IRTAspectraarisefromperturbationsofinvestigatorsusedmid-IRTAspectroscopytoexaminepolaronthesymmetricN−Hbendmodecausedbythepresenceofformationandchargerecombinationinhalideperovskiteswith36photogeneratedchargecarriersintheexcitedelectronicstateofdifferenttypesofA-sitecations.Figure4Ashowsthelargethehalideperovskitefilm.Thecorrespondingground-statepolaronabsorptionspectraofMAPbBr3,FAPbBr3,andFTIRspectraofthefilmateachtemperatureappearintheCsPbBr3perovskitefilmsmeasuredunderidenticalexcitationlowerpanelsofFigure3A.SimilarperturbationsofN−Handconditions.Thesimilaritybetweenthemid-IRTAspectra,C−HstretchvibrationalmodesinaMAPbI3filmwerewhoseshapedependsonthedelocalizationlengthandbinding5520,36observedusingrecenttime-resolvedandsteady-statemid-IRenergiesoflargepolarons,indicatedthatthedipolar62measurements.disorder(oralignment)oforganiccationswithinthe5430https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectiveAdditionalanalysisofthedecaykineticsusingamethodpreviouslydevelopedtoexaminepolaronrecombinationdynamicsinMAPbI3filmsrevealedthatthebimolecularrecombinationcoefficientsfortheperovskitefilmsexaminedinFigure4wereindistinguishablewithinexperimentalprecision.Thisfindingisconsistentwithpriortime-resolvedterahertzspectroscopymeasurementsofCsPbI3filmsthatshowedsimilarchargetransportandrecombinationkineticscompared69totheirhybridorganic−inorganicMAPbI3analogs.Takentogether,theseresultsindicatethatthedipolarfieldcreatedbyorganiccationsdoesnotaffectrecombinationratesinhalideperovskites.Instead,thecharge−latticeinteractionsleadingtopolaronformation,slowerrecombinationrates,andquenchedphotoluminescencearisefromdistortionsofthematerial’sinorganicsublattice.Theabilitytoprobethemid-infraredopticalabsorptionspectraoflargepolaronsinhalideperovskitesalsoallowedFigure4.(A)(top)Schematicdiagramofthemid-IRTAopticalinvestigatorstodetermineifdipolarorganiccationsinfluencegeometry.(bottom)Mid-IRTAspectraofMAPbBr3,FAPbBr3,andCsPbBr3perovskitefilms.(B)PolarondecaykineticsofMAPbBr3,carrierlocalizationonultrafasttimescales.AsmentionedFAPbBr3,andCsPbBr3perovskitefilmsfollowingbandgapexcitationpreviously,someinvestigatorshavesuggestedthatpolaronat532nm.Thecomparisonsdemonstratethatthedipolarmotionofformationinhalideperovskiteaffectscarriercoolingratesorganiccationsdoesnotaffectpolaronspectraorrecombinationrateswithinthematerial.27,28Thus,understandinghowtocontrolwithinthematerial.(C)Polaronformationkineticsmeasuredinthepolaronformationratesinhalideperovskitesmayleadtotheseriesofleadbromideperovskitefilmsfollowingopticalexcitationatdevelopmentofdesignrulesforhowtoutilizehotcarriersin532nm.Thepolaronformationratesareidenticaldespitetheperovskite-basedoptoelectronics.differentdipolemomentsoftheAsitecations,indicatingthatorganiccationrotationsdonotcontributesignificantlytopolaronformationFigure4Cdisplaystheultrafastmid-IRTAkineticsoftheinhalideperovskites.Reprintedwithpermissionfromref36.largepolaronabsorptionsignalpresentedinFigure4A36Copyright2020AmericanChemicalSociety.followingpulsedexcitationat532nm.Theformationrateoflargepolaronsineachfilmwasestimatedbymonitoringtheperovskitelatticedoesnotinfluencetheextentofcarriergrowthofthelargepolaronabsorptionsignal.Forallofthelocalizationorlargepolaronbindingenergies.ultrafastmid-IRTAkineticsdisplayedinFigure4C,theriseTheinfluenceofdipolarorganiccationsontheoptoelec-timeofthetransientabsorptionsignalwaslimitedbythetronicpropertiesofhalideperovskiteswasfurtherinvestigatedinstrumentresponseoftheultrafastmeasurement(grayline,byexaminingthedecaykineticsofthelargepolaronabsorptionFigure4C),indicatingthatpolaronsformrapidlyinhalidespectrashowninFigure4A.Figure4Brepresentspolaronperovskitesinlessthan150fsfollowingopticalexcitation.decaykineticsofMAPbBr3,FAPbBr3,andCsPbBr3filmsImportantly,theresultspresentedinFigure4Cindicatethatobtainedbyintegratingthefrequencyrangebetween1000andpolaronformationratesdonotdependontheidentityofthe1800cm−1following532nmpulsedexcitation.TheA-sitecation.Furthermore,therisetimesofthepolaroncomparisonshowslittlevariationinthelifetimeoflargeabsorptionsignalsaresignificantlyfasterthanthediffusivepolaronsphotogeneratedwithineachoftheperovskitefilms.motionoforganiccations(∼3ps)obtainedbypolarization-Figure5.(A)(top)PlotshowingthepositionsofnitrogenatomsofFAovertimeinpureandmixed-phaseperovskitefilms.(bottom)VectorautocorrelationfunctionofFAcationsinmixedandpurephaseperovskitefilmsobtainedfrommoleculardynamicssimulationsshowingtheprobabilityofaFAcationremaininginitsinitialorientationasafunctionoftime.Reprintedwithpermissionfromref46.Copyright2017AmericanChemicalSociety.(B)TransientanisotropydynamicsofFAionsobtainedbymeasuringtheCNstretchmode.Reprintedwithpermissionfromref42.Copyright2018AmericanChemicalSociety.5431https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspective42resolved2DIRmeasurements,indicatingthatthedipolar■CONCLUSIONSANDOUTLOOKmotionoforganiccationsdoesnotunderpinpolaronInthisPerspective,recentmid-IRTAspectroscopystudiesformationinthisclassofmaterial.Rather,distortionsofthewerehighlightedthatexaminedthecharge−latticeinteractionsinorganicsublatticeunderpinpolaronformationonultrafastanddynamicdisorderthatleadtolargepolaronformation.Thetimescalesinhalideperovskites.Thisresultisconsistentwithinfluencethattheseinteractionshaveonband-edgerecombi-low-frequencyRamanspectroscopymeasurements,whichnationandoptoelectronicpropertiesofhalideperovskiteswererevealedthatpolarfluctuationsunderpinningpolaronfor-alsodiscussed.TheformationoflargepolaronswasshowntomationdonotdependonthedipolemomentoftheA-siteslowbimolecularrecombinationwithinthematerials.How-39cationinthisclassofmaterial.Likewise,theoreticalever,theenergeticbarriersintroducedbypolaronformationcalculationshavealsoshownthatFröhlichinteractionsalsoquenchphotoluminescencequantumyields.ThisresultbetweenchargecarriersandphononsoccurpredominatelysuggeststhattheelectronicpropertiesofhalideperovskitescanwiththestretchingandbendingLOphononmodesofthebetunedforspecificapplications(e.g.,photovoltaicsversus70material’sPbI3inorganicsublattice.Theabovefindingslightemittingdiodes)bymodifyingthestructureandrevealthatmixturesofA-sitecationsthatcanaffectthecompositionofthematerials.Furthermore,theresults25,63−68optoelectronicpropertiesofhalideperovskitesmaydopresentedinthisPerspectivedemonstratethatthedipolarsobytheirinfluenceonthestructureanddynamicsofthemotionoforganiccationsdoesnotaffectpolaronformationorinorganiclatticeratherthanfromthedipolarpropertiesofthebimolecularrecombinationinhalideperovskites,indicatingcationsthemselves.Theseobservationsfurtherhighlightthethatinvestigatorsshouldfocusonunderstandinghowneedtounderstandtheinterplayofsuchpolaroniceffectsonmodificationstothestructureanddynamicsoftheperovskiteexcitedelectronicstatestopredictandcontroltheelectroniclattice’sinorganicframeworkaffectthecharge−latticeinter-propertiesofhalideperovskites.actionsthatunderpinpolaronformation.ThesefindingsalsosuggestthateffortstotunethepropertiesWhileclarityisemergingabouttheinfluencethatcharge−ofhalideperovskitesforphotovoltaicandlightemittinglatticeinteractionshaveontheelectronicpropertiesofapplicationsshouldsimilarlyfocusonthestructureandtraditionalhalideperovskitessuchasMAPbI3andrelateddynamicsoftheinorganicsublatticeandhoworganicA-sitematerials,theabilitytopredictandcontroltheseinteractionscationsmayinfluencethissublattice.Recenttheoreticalstudiesinmorecomplexmetalhalidesemiconductorssuchas2DhavesuggestedthatitmaybepossibletotunethestructuralRuddlesden−Popperlayeredmaterials,doubleperovskites,anddynamicsoftheperovskitelatticethatleadtopolaronnanocrystallinesystemsremainstobedeveloped.Futureworkformationbyincorporatingionswithdifferentsizesintotheleveragingthestructuralspecificityofmid-IRTAspectroscopymaterial.46,71Figure5Ahighlightsoneofthesestudies,whichcombinedwiththeabilitytomeasuretheenergeticsandsuggestedthatthemixingofdifferentlysizedA-sitecationsdynamicsoflargepolaronsisexpectedtohelpguideongoing(e.g.,FAandCs)withintheperovskitelatticemayslowtheeffortstounderstandthenatureofcharge−latticeinteractionsdynamicsoftheperovskitelatticebyeffectively“locking”theinthesematerials.Forexample,investigatorsmayusemid-IRmaterial’sinorganicframework.46SuchreducedlatticeTAspectroscopytodirectlyprobethevibrationalmodesoffluctuationsmayleadtosmallercharge−latticecouplingandorganiccationsthatseparatethelayersin2DRuddlesden−29−31wouldbeexpectedtoslowtherotationaldynamicsoftheFAPoppermaterialstoinvestigatethestructuraldistortionscations,consistentwiththemoleculardynamics(MD)andlatticedynamicsinvolvedinchargetransportversussimulationsthatexaminedthedynamicsofFAcationsinradiativerecombination.Similarapproachesmaybeusedtoinvestigatethelatticedynamicsindoubleperovskiteswithmixed-cationperovskites(Figure5A).Theresultsofthethesemixed+1and+3cationsbeinginvestigatedaslead-freeMDsimulationswerelaterconfirmedexperimentallyina32−34alternativestoguideexplorationofthelargeparameterperspectivewrittenbyGallopandco-workerswhoused2DIRspaceofthesematerialstoachievedesiredmaterialproperties.anisotropytoexaminethedynamicsofFAcationsinmixed42Finally,theresultspresentedinthisPerspectivesuggestthatandpurecationperovskitefilms(Figure5B).chargecarriercoolingdynamicsinhalideperovskitescanbeRecallingthatthecompositionofcurrentstate-of-the-art36investigatedusingmid-IRTAspectroscopy.Boththeoreticalperovskite-baseddevicesincludesseveraldifferentA-siteandexperimentalstudieshavesuggestedthattheunusuallycations,B-sitemetalions,andX-sitehalideions,theresultsslowthermalizationkineticsobservedinhalideperovskitesmaypresentedinFigure5suggestthatdevicedevelopersmaybebeduetothepolaronicnatureofchargecarriersinthisclassoftuningthepolaronicpropertiesofhalideperovskitesviaionmaterial.Thus,carriercoolingratesinhalideperovskitefilmssubstitutiontostriketheoptimalbalancebetweenchargemaybecharacterizedonultrafasttimescalesbydirectlytransportandrecombinationforphotovoltaicapplications.Forprobingtheopticalsignaturesoflargepolaronsinthemid-IRexample,mixedcationsystemswithvariousMA,FA,andCsasafunctionofexcitationwavelengthandtemperature.ionratioscanexhibitenhancedphotoluminescencequantum1242,52,72,73Becausepolaronformationistemperature-dependent,theseyieldsandslowerdefect-mediatedrecombination.measurementsareexpectedtoprovideinformationabouthowAdditionally,ionsubstitutionmayalsointroducestaticpolaronformationaffectscarrierthermalizationinthisclassofdisorderthatmayleadtodisorderedcharge−latticecouplingmaterial.andpolaronformation,ashasrecentlybeenreportedby74Nishidaandco-workers.Suchstaticdisordermayalsoslow■chargecarrierrecombinationbyspatiallyseparatingchargeAUTHORINFORMATION75CorrespondingAuthorcarriersinseparateregionsofafilm.ContinuedworkthatcorrelatespolaronrecombinationratesandtransportinmixedJohnB.Asbury−MaterialsResearchInstituteandionperovskiteswithdeviceresultsisexpectedtobeanactiveDepartmentofChemistry,ThePennsylvaniaStateUniversity,areaofresearchintheperovskitecommunity.UniversityPark,Pennsylvania16802,UnitedStates;5432https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectiveorcid.org/0000-0002-3641-7276;Email:jasbury@HybridPerovskiteThinFilmsbyLigandPassivation.ACSEnergyLett.psu.edu2016,1,438−444.(4)Stewart,R.J.;Grieco,C.;Larsen,A.V.;Maier,J.J.;Asbury,J.B.AuthorApproachingBulkCarrierDynamicsinOrgano-HalidePerovskiteKyleT.Munson−MaterialsResearchInstitute,TheNanocrystallineFilmsbySurfacePassivation.J.Phys.Chem.Lett.PennsylvaniaStateUniversity,UniversityPark,Pennsylvania2016,7,1148−1153.16802,UnitedStates(5)Gratzel,M.TheRiseofHighlyEfficientandStablePerovskiteSolarCells.Acc.Chem.Res.2017,50,487−491.Completecontactinformationisavailableat:(6)Chen,X.;Lu,H.;Yang,Y.;Beard,M.C.ExcitonicEffectsinhttps://pubs.acs.org/10.1021/acs.jpcc.0c10889MethylammoniumLeadHalidePerovskites.J.Phys.Chem.Lett.2018,9,2595−2603.Notes(7)DeWolf,S.;Holovsky,J.;Moon,S.-J.;Löper,P.;Niesen,B.;TheauthorsdeclarethefollowingcompetingfinancialLedinsky,M.;Haug,F.-J.;Yum,J.-H.;Ballif,C.OrganometallicHalideinterest(s):J.B.A.ownsequityinMagnitudeInstruments,Perovskites:SharpOpticalAbsorptionEdgeandItsRelationtowhichhasaninterestinthisproject.HisownershipinthisPhotovoltaicPerformance.J.Phys.Chem.Lett.2014,5,1035−1039.companyhasbeenreviewedbythePennsylvaniaState(8)Jia,Y.F.;Kerner,R.A.;Grede,A.J.;Rand,B.P.;Giebink,N.C.Continuous-WaveLasinginanOrganic-InorganicLeadHalideUniversity'sIndividualConflictofInterestCommitteeandisPerovskiteSemiconductor.Nat.Photonics2017,11,784−788.currentlybeingmanagedbytheUniversity.(9)Jia,Y.;Kerner,R.A.;Grede,A.J.;Brigeman,A.N.;Rand,B.P.;BiographiesGiebink,N.C.Diode-PumpedOrgano-LeadHalidePerovskiteLasingKyleT.Munsonearnedabachelor’sdegreeinchemistryfromRowaninaMetal-CladDistributedFeedbackResonator.NanoLett.2016,16,UniversityinGlassboro,NJ,in2015.WhileatRowan,hestudied4624−4629.protonsolvationandconductionmechanismsinionicliquids.Hewas(10)Wang,H.;Kosasih,F.U.;Yu,H.;Zheng,G.;Zhang,J.;Pozina,G.;Liu,Y.;Bao,C.;Hu,Z.;Liu,X.;etal.Perovskite-MoleculeanNSFGraduateResearchFellowintheDepartmentofChemistryatCompositeThinFilmsforEfficientandStableLight-EmittingDiodes.thePennsylvaniaStateUniversityworkingwithProfessorJohnAsburyNat.Commun.2020,11,891.examiningthestructuraloriginsoftheelectronicpropertiesofhalide(11)Emin,D.BarriertoRecombinationofOppositelyChargedperovskitesusingmid-IRtransientabsorptionspectroscopy.Cur-LargePolarons.J.Appl.Phys.2018,123,055105.rently,heisattheMaterialsResearchInstituteatthePennsylvania(12)Munson,K.T.;Kennehan,E.R.;Doucette,G.S.;Asbury,J.B.StateUniversitydevelopinganultrafasttransientabsorptionmicro-DynamicDisorderDominatesDelocalization,Transport,andscopetoexaminetheelectronicpropertiesof2-dimensionalmaterialsRecombinationinHalidePerovskites.Chem.2018,4,2826−2843.withcontrolleddopingcharacteristics.(13)Miyata,K.;Meggiolaro,D.;Trinh,M.T.;Joshi,P.P.;Mosconi,E.;Jones,S.C.;DeAngelis,F.;Zhu,X.Y.LargePolaronsinLeadJohnB.AsburyisaprofessorofchemistryatthePennsylvaniaStateHalidePerovskites.Sci.Adv.2017,3,No.e1701217.UniversityandcofounderofMagnitudeInstruments.Hisresearch(14)Munson,K.T.;Swartzfager,J.R.;Asbury,J.B.LatticeprogramfocusesondevelopmentofultrafastspectroscopyandAnharmonicity:ADouble-EdgedSwordfor3dPerovskite-BasedmicroscopytechniquestounderstandhowtheelectronicpropertiesofOptoelectronics.ACSEnergyLett.2019,4,1888−1897.materialsevolvefromtheirmolecularandcrystallinestructure.Before(15)Tsai,H.;Asadpour,R.;Blancon,J.-C.;Stoumpos,C.C.;comingtoPennStatein2005,AsburycompletedhisPh.D.inDurand,O.;Strzalka,J.W.;Chen,B.;Verduzco,R.;Ajayan,P.M.;chemistryatEmoryUniversityworkingwithTianquan(Tim)LiantoTretiak,S.;etal.Light-InducedLatticeExpansionLeadstoHigh-investigateinterfacialelectrontransferdynamicsindyesensitizedEfficiencyPerovskiteSolarCells.Science2018,360,67−70.metaloxides.HispostdoctoralworkatStanfordUniversitywith(16)SrimathKandada,A.R.;Silva,C.ExcitonPolaronsinTwo-MichaelFayerfocusedondevelopmentof2DIRspectroscopyofDimensionalHybridMetal-HalidePerovskites.J.Phys.Chem.Lett.2020,11,3173−3184.hydrogenbonddynamicsinwater.(17)Bretschneider,S.A.;Ivanov,I.;Wang,H.I.;Miyata,K.;Zhu,X.;Bonn,M.QuantifyingPolaronFormationandChargeCarrier■ACKNOWLEDGMENTSCoolinginLead-IodidePerovskites.Adv.Mater.2018,30,1707312.TheauthorsK.T.M.andJ.B.A.aregratefulforsupportofthis(18)Bonn,M.;Miyata,K.;Hendry,E.;Zhu,X.Y.RoleofDielectricworkfromtheU.S.NationalScienceFoundationunderGrantDraginPolaronMobilityinLeadHalidePerovskites.ACSEnergyLett.NumberCHE-1954301.K.T.M.isgratefulforsupportfrom2017,2,2555−2562.theNationalScienceFoundationGraduateResearchFellow-(19)Zhu,H.;Miyata,K.;Fu,Y.;Wang,J.;Joshi,P.P.;Niesner,D.;Williams,K.W.;Jin,S.;Zhu,X.-Y.ScreeninginCrystallineLiquidsshipProgramunderGrantNo.DGE1255832.Anyopinions,ProtectsEnergeticCarriersinHybridPerovskites.Science2016,353,findings,andconclusionsorrecommendationsexpressedin1409−1413.thismaterialarethoseoftheauthor(s)anddonotnecessarily(20)Munson,K.T.;Doucette,G.S.;Kennehan,E.R.;Swartzfager,reflecttheviewsoftheNationalScienceFoundation.J.R.;Asbury,J.B.VibrationalProbeoftheStructuralOriginsofSlowRecombinationinHalidePerovskites.J.Phys.Chem.C2019,123,■REFERENCES7061−7073.(1)deQuilettes,D.W.;Frohna,K.;Emin,D.;Kirchartz,T.;Bulovic,(21)Sendner,M.;Nayak,P.K.;Egger,D.A.;Beck,S.;Müller,C.;V.;Ginger,D.S.;Stranks,S.D.Charge-CarrierRecombinationinEpding,B.;Kowalsky,W.;Kronik,L.;Snaith,H.J.;Pucci,A.;etal.HalidePerovskites.Chem.Rev.2019,119,11007−11019.OpticalPhononsinMethylammoniumLeadHalidePerovskitesand(2)Stranks,S.D.;Eperon,G.E.;Grancini,G.;Menelaou,C.;ImplicationsforChargeTransport.Mater.Horiz.2016,3,613−620.Alcocer,M.J.P.;Leijtens,T.;Herz,L.M.;Petrozza,A.;Snaith,H.J.(22)Zhao,D.;Skelton,J.M.;Hu,H.;La-o-Vorakiat,C.;Zhu,J.-X.;Electron-HoleDiffusionLengthsExceeding1MicrometerinanMarcus,R.A.;Michel-Beyerle,M.-E.;Lam,Y.M.;Walsh,A.;Chia,E.OrganometalTrihalidePerovskiteAbsorber.Science2013,342,341−E.M.Low-FrequencyOpticalPhononModesandCarrierMobilityin344.theHalidePerovskiteCh3nh3pbbr3UsingTerahertzTime-Domain(3)deQuilettes,D.W.;Koch,S.;Burke,S.;Paranji,R.K.;Spectroscopy.Appl.Phys.Lett.2017,111,201903.Shropshire,A.J.;Ziffer,M.E.;Ginger,D.S.Photoluminescence(23)Lan,Y.;Dringoli,B.J.;Valverde-Chavez,D.A.;Ponseca,C.S.;́LifetimesExceeding8MsandQuantumYieldsExceeding30%inSutton,M.;He,Y.;Kanatzidis,M.G.;Cooke,D.G.Ultrafast5433https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspectiveCorrelatedChargeandLatticeMotioninaHybridMetalHalideInteractionsinDeterminingOctahedralTiltingintheCh3nh3pbi3Perovskite.Sci.Adv.2019,5,No.eaaw5558.HybridOrganic-InorganicHalidePerovskiteSolarCellSemi-(24)Batignani,G.;Fumero,G.;SrimathKandada,A.R.;Cerullo,G.;conductor.Sci.Rep.2019,9,50.Gandini,M.;Ferrante,C.;Petrozza,A.;Scopigno,T.Probing(42)Gallop,N.P.;Selig,O.;Giubertoni,G.;Bakker,H.J.;Rezus,Y.FemtosecondLatticeDisplacementUponPhoto-CarrierGenerationL.A.;Frost,J.M.;Jansen,T.L.C.;Lovrincic,R.;Bakulin,A.A.inLeadHalidePerovskite.Nat.Commun.2018,9,1971.RotationalCationDynamicsinMetalHalidePerovskites:Effecton(25)Zhu,X.Y.;Podzorov,V.ChargeCarriersinHybridOrganic-PhononsandMaterialProperties.J.Phys.Chem.Lett.2018,9,5987−InorganicLeadHalidePerovskitesMightBeProtectedasLarge5997.Polarons.J.Phys.Chem.Lett.2015,6,4758−4761.(43)Bakulin,A.A.;Selig,O.;Bakker,H.J.;Rezus,Y.L.A.;Muller,(26)Yang,Y.;Ostrowski,D.P.;France,R.M.;Zhu,K.;vandeC.;Glaser,T.;Lovrincic,R.;Sun,Z.H.;Chen,Z.Y.;Walsh,A.;etal.Lagemaat,J.;Luther,J.M.;Beard,M.C.ObservationofaHot-Real-TimeObservationofOrganicCationReorientationinPhononBottleneckinLead-IodidePerovskites.Nat.Photonics2016,MethylammoniumLeadIodidePerovskites.J.Phys.Chem.Lett.10,53−59.2015,6,3663−3669.(27)Hopper,T.R.;Gorodetsky,A.;Frost,J.M.;Müller,C.;(44)Selig,O.;Sadhanala,A.;Müller,C.;Lovrincic,R.;Chen,Z.;Lovrincic,R.;Bakulin,A.A.UltrafastIntrabandSpectroscopyofHot-Rezus,Y.L.A.;Frost,J.M.;Jansen,T.L.C.;Bakulin,A.A.OrganicCarrierCoolinginLead-HalidePerovskites.ACSEnergyLett.2018,3,CationRotationandImmobilizationinPureandMixedMethyl-2199−2205.ammoniumLead-HalidePerovskites.J.Am.Chem.Soc.2017,139,(28)Niesner,D.;Zhu,H.;Miyata,K.;Joshi,P.P.;Evans,T.J.S.;4068−4074.Kudisch,B.J.;Trinh,M.T.;Marks,M.;Zhu,X.Y.Persistent(45)Taylor,V.C.A.;Tiwari,D.;Duchi,M.;Donaldson,P.M.;EnergeticElectronsinMethylammoniumLeadIodidePerovskiteClark,I.P.;Fermin,D.J.;Oliver,T.A.A.InvestigatingtheRoleoftheThinFilms.J.Am.Chem.Soc.2016,138,15717−15726.OrganicCationinFormamidiniumLeadIodidePerovskiteUsing(29)Smith,M.D.;Karunadasa,H.I.White-LightEmissionfromUltrafastSpectroscopy.J.Phys.Chem.Lett.2018,9,895−901.LayeredHalidePerovskites.Acc.Chem.Res.2018,51,619−627.(46)Ghosh,D.;WalshAtkins,P.;Islam,M.S.;Walker,A.B.;(30)Cortecchia,D.;Yin,J.;Petrozza,A.;Soci,C.WhiteLightEames,C.GoodVibrations:LockingofOctahedralTiltinginMixed-EmissioninLow-DimensionalPerovskites.J.Mater.Chem.C2019,7,CationIodidePerovskitesforSolarCells.ACSEnergyLett.2017,2,4956−4969.2424−2429.(31)Lin,H.;Zhou,C.;Tian,Y.;Siegrist,T.;Ma,B.Low-(47)Herz,L.M.HowLatticeDynamicsModeratetheElectronicDimensionalOrganometalHalidePerovskites.ACSEnergyLett.2018,PropertiesofMetal-HalidePerovskites.J.Phys.Chem.Lett.2018,9,3,54−62.6853−6863.(32)McCall,K.M.;Stoumpos,C.C.;Kostina,S.S.;Kanatzidis,M.(48)Katan,C.;Mohite,A.D.;Even,J.EntropyinHalideG.;Wessels,B.W.StrongElectron-PhononCouplingandSelf-Perovskites.Nat.Mater.2018,17,377−379.TrappedExcitonsintheDefectHalidePerovskitesA3m2i9(a=Cs,(49)Wright,A.D.;Verdi,C.;Milot,R.L.;Eperon,G.E.;Pérez-Rb;M=Bi,Sb).Chem.Mater.2017,29,4129−4145.Osorio,M.A.;Snaith,H.J.;Giustino,F.;Johnston,M.B.;Herz,L.M.(33)Zelewski,S.J.;Urban,J.M.;Surrente,A.;Maude,D.K.;Electron-PhononCouplinginHybridLeadHalidePerovskites.Nat.Schade,L.;Johnson,R.D.;Dollmann,M.;Nayak,P.K.;Snaith,H.J.;Commun.2016,7,11755.Radaelli,P.;etal.RevealingtheNatureofPhotoluminescence(50)Seiler,H.;Palato,S.;Sonnichsen,C.;Baker,H.;Socie,E.;EmissionintheMetal-HalideDoublePerovskiteCs2agbibr6.J.Mater.Strandell,D.P.;Kambhampati,P.Two-DimensionalElectronicChem.C2019,7,8350−8356.SpectroscopyRevealsLiquid-LikeLineshapeDynamicsinCsPbI3(34)Volonakis,G.;Filip,M.R.;Haghighirad,A.A.;Sakai,N.;PerovskiteNanocrystals.Nat.Commun.2019,10,4962.Wenger,B.;Snaith,H.J.;Giustino,F.Lead-FreeHalideDouble(51)Cinquanta,E.;Meggiolaro,D.;Motti,S.G.;Gandini,M.;PerovskitesViaHeterovalentSubstitutionofNobleMetals.J.Phys.Alcocer,M.J.P.;Akkerman,Q.A.;Vozzi,C.;Manna,L.;DeAngelis,Chem.Lett.2016,7,1254−1259.F.;Petrozza,A.;etal.UltrafastThzProbeofPhotoinducedPolarons(35)Manser,J.S.;Christians,J.A.;Kamat,P.V.IntriguinginLead-HalidePerovskites.Phys.Rev.Lett.2019,122,166601.OptoelectronicPropertiesofMetalHalidePerovskites.Chem.Rev.(52)Tan,H.;Che,F.;Wei,M.;Zhao,Y.;Saidaminov,M.I.;2016,116,12956−13008.Todorovic,P.;Broberg,D.;Walters,G.;Tan,F.;Zhuang,T.;etal.́(36)Munson,K.T.;Swartzfager,J.R.;Gan,J.;Asbury,J.B.DoesDipolarCationsConferDefectToleranceinWide-BandgapMetalDipolarMotionofOrganicCationsAffectPolaronDynamicsandHalidePerovskites.Nat.Commun.2018,9,3100.BimolecularRecombinationinHalidePerovskites?J.Phys.Chem.Lett.(53)Lewis,D.J.DepositionTechniquesforPerovskiteSolarCells.2020,11,3166−3172.InNanostructuredMaterialsforTypeIIIPhotovoltaics;TheRoyal(37)Nishida,J.;Breen,J.P.;Lindquist,K.P.;Umeyama,D.;SocietyofChemistry:2018;Chapter10,pp341−366.Karunadasa,H.I.;Fayer,M.D.DynamicallyDisorderedLatticeina(54)Herz,L.M.Charge-CarrierDynamicsinOrganic-InorganicLayeredPb-I-ScnPerovskiteThinFilmProbedbyTwo-DimensionalMetalHalidePerovskites.Annu.Rev.Phys.Chem.2016,67,65−89.InfraredSpectroscopy.J.Am.Chem.Soc.2018,140,9882−9890.(55)Munson,K.T.;Grieco,C.;Kennehan,E.R.;Stewart,R.J.;(38)Park,M.;Neukirch,A.J.;Reyes-Lillo,S.E.;Lai,M.;Ellis,S.R.;Asbury,J.B.Time-ResolvedInfraredSpectroscopyDirectlyProbesDietze,D.;Neaton,J.B.;Yang,P.;Tretiak,S.;Mathies,R.A.Excited-FreeandTrappedCarriersinOrgano-HalidePerovskites.ACSEnergyStateVibrationalDynamicstowardthePolaroninMethylammoniumLett.2017,2,651−658.LeadIodidePerovskite.Nat.Commun.2018,9,2525.(56)Munson,K.T.;Kennehan,E.R.;Asbury,J.B.Structural(39)Yaffe,O.;Guo,Y.;Tan,L.Z.;Egger,D.A.;Hull,T.;Stoumpos,OriginsoftheElectronicPropertiesofMaterialsViaTime-ResolvedC.C.;Zheng,F.;Heinz,T.F.;Kronik,L.;Kanatzidis,M.G.;etal.InfraredSpectroscopy.J.Mater.Chem.C2019,7,5889−5909.LocalPolarFluctuationsinLeadHalidePerovskiteCrystals.Phys.Rev.(57)Kiermasch,D.;Rieder,P.;Tvingstedt,K.;Baumann,A.;Lett.2017,118,136001.Dyakonov,V.ImprovedChargeCarrierLifetimeinPlanarPerovskite(40)Baikie,T.;Barrow,N.S.;Fang,Y.;Keenan,P.J.;Slater,P.R.;SolarCellsbyBromineDoping.Sci.Rep.2016,6,39333.Piltz,R.O.;Gutmann,M.;Mhaisalkar,S.G.;White,T.J.A(58)Emin,D.Optical-PropertiesofLargeandSmallPolaronsandCombinedSingleCrystalNeutron/X-RayDiffractionandSolid-StateBipolarons.Phys.Rev.B:Condens.MatterMater.Phys.1993,48,NuclearMagneticResonanceStudyoftheHybridPerovskites13691−13702.Ch3nh3pbx3(X=I,BrandCl).J.Mater.Chem.A2015,3,9298−(59)Xing,G.;Wu,B.;Wu,X.;Li,M.;Du,B.;Wei,Q.;Guo,J.;9307.Yeow,E.K.L.;Sum,T.C.;Huang,W.TranscendingtheSlow(41)Varadwaj,P.R.;Varadwaj,A.;Marques,H.M.;Yamashita,K.BimolecularRecombinationinLead-HalidePerovskitesforElectro-SignificanceofHydrogenBondingandOtherNoncovalentluminescence.Nat.Commun.2017,8,14558.5434https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCPerspective(60)Era,M.;Morimoto,S.;Tsutsui,T.;Saito,S.Organic-InorganicHeterostructureElectroluminescentDeviceUsingaLayeredPerov-skiteSemiconductor(C6h5c2h4nh3)2pbi4.Appl.Phys.Lett.1994,65,676−678.(61)Hong,X.;Ishihara,T.;Nurmikko,A.V.PhotoconductivityandElectroluminescenceinLeadIodideBasedNaturalQuantumWellStructures.SolidStateCommun.1992,84,657−661.(62)Wong,W.P.D.;Yin,J.;Chaudhary,B.;Chin,X.Y.;Cortecchia,D.;Lo,S.-Z.A.;Grimsdale,A.C.;Mohammed,O.F.;Lanzani,G.;Soci,C.LargePolaronSelf-TrappedStatesinThree-DimensionalMetal-HalidePerovskites.ACSMaterialsLett.2020,2,20−27.(63)Chen,T.;Chen,W.-L.;Foley,B.J.;Lee,J.;Ruff,J.P.C.;Ko,J.Y.P.;Brown,C.M.;Harriger,L.W.;Zhang,D.;Park,C.;etal.OriginofLongLifetimeofBand-EdgeChargeCarriersinOrganic-InorganicLeadIodidePerovskites.Proc.Natl.Acad.Sci.U.S.A.2017,114,7519−7524.(64)Kubicki,D.J.;Prochowicz,D.;Hofstetter,A.;Péchy,P.;Zakeeruddin,S.M.;Gratzel,M.;Emsley,L.CationDynamicsin̈Mixed-Cation(Ma)X(Fa)1-Xpbi3HybridPerovskitesfromSolid-StateNmr.J.Am.Chem.Soc.2017,139,10055−10061.(65)Ambrosio,F.;Meggiolaro,D.;Mosconi,E.;DeAngelis,F.ChargeLocalization,Stabilization,andHoppinginLeadHalidePerovskites:CompetitionbetweenPolaronStabilizationandCationDisorder.ACSEnergyLett.2019,4,2013−2020.(66)Yang,B.;Ming,W.;Du,M.-H.;Keum,J.K.;Puretzky,A.A.;Rouleau,C.M.;Huang,J.;Geohegan,D.B.;Wang,X.;Xiao,K.Real-TimeObservationofOrder-DisorderTransformationofOrganicCationsInducedPhaseTransitionandAnomalousPhotolumines-cenceinHybridPerovskites.Adv.Mater.2018,30,1705801.(67)Chen,Y.;Yi,H.T.;Wu,X.;Haroldson,R.;Gartstein,Y.N.;Rodionov,Y.I.;Tikhonov,K.S.;Zakhidov,A.;Zhu,X.Y.;Podzorov,V.ExtendedCarrierLifetimesandDiffusioninHybridPerovskitesRevealedbyHallEffectandPhotoconductivityMeasurements.Nat.Commun.2016,7,12253.(68)Neukirch,A.J.;Nie,W.;Blancon,J.-C.;Appavoo,K.;Tsai,H.;Sfeir,M.Y.;Katan,C.;Pedesseau,L.;Even,J.;Crochet,J.J.;etal.PolaronStabilizationbyCooperativeLatticeDistortionandCationRotationsinHybridPerovskiteMaterials.NanoLett.2016,16,3809−3816.(69)Dastidar,S.;Li,S.;Smolin,S.Y.;Baxter,J.B.;Fafarman,A.T.SlowElectron-HoleRecombinationinLeadIodidePerovskitesDoesNotRequireaMolecularDipole.ACSEnergyLett.2017,2,2239−2244.(70)Schlipf,M.;Poncé,S.;Giustino,F.CarrierLifetimesandPolaronicMassEnhancementintheHybridHalidePerovskite${\Mathrm{Ch}}_{3}{\Mathrm{Nh}}_{3}{\Mathrm{Pbi}}_{3}$fromMultiphononFr\“OhlichCoupling.Phys.Rev.Lett.2018,121,086402.(71)Bischak,C.G.;Wong,A.B.;Lin,E.;Limmer,D.T.;Yang,P.;Ginsberg,N.S.TunablePolaronDistortionsControltheExtentofHalideDemixinginLeadHalidePerovskites.J.Phys.Chem.Lett.2018,9,3998−4005.(72)Fisicaro,G.;LaMagna,A.;Alberti,A.;Smecca,E.;Mannino,G.;Deretzis,I.LocalOrderandRotationalDynamicsinMixeda-CationLeadIodidePerovskites.J.Phys.Chem.Lett.2020,11,1068−1074.(73)Dagnall,K.A.;Foley,B.J.;Cuthriell,S.A.;Alpert,M.R.;Deng,X.;Chen,A.Z.;Sun,Z.;Gupta,M.C.;Xiao,K.;Lee,S.-H.;etal.RelationshipbetweentheNatureofMonovalentCationsandChargeRecombinationinMetalHalidePerovskites.ACSAppl.EnergyMater.2020,3,1298−1304.(74)Nishida,J.;Alfaifi,A.H.;Gray,T.P.;Shaheen,S.E.;Raschke,M.B.HeterogeneousCation-LatticeInteractionandDynamicsinTriple-CationPerovskitesRevealedbyInfraredVibrationalNano-scopy.ACSEnergyLett.2020,5,1636−1643.(75)Adriaenssens,G.J.;Arkhipov,V.I.Non-LangevinRecombi-nationinDisorderedMaterialswithRandomPotentialDistributions.SolidStateCommun.1997,103,541−543.5435https://dx.doi.org/10.1021/acs.jpcc.0c10889J.Phys.Chem.C2021,125,5427−5435

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭