专题六:应用题-学生版-苏深强

专题六:应用题-学生版-苏深强

ID:7815854

大小:634.50 KB

页数:8页

时间:2018-02-27

专题六:应用题-学生版-苏深强_第1页
专题六:应用题-学生版-苏深强_第2页
专题六:应用题-学生版-苏深强_第3页
专题六:应用题-学生版-苏深强_第4页
专题六:应用题-学生版-苏深强_第5页
资源描述:

《专题六:应用题-学生版-苏深强》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、应用题数学应用性问题是历年高考命题的主要题型之一,由于这类题目文字叙述长,数学背景陌生,涉及面又广,对相当一部分学生来讲,连题目都不“敢”去看了,心理失衡,导致在阅读和理解方面存在着一定困难.解答这类问题的要害是消除心理和语言障碍,深刻理解题意,做好文字语言向数学的符号语言的翻译转化,自信,冷静地去读完题目,保持冷静,认真对待,不能随意放弃.读题是翻译的基础,读题时要抓住题目中的关键字、词、句,弄清题中的已知事项,初步了解题目中讲的是什么事情,要求的结果是什么。在读题的基础上,要能复述题目中的要

2、点,深思题意,很多情况下,可将应用题翻译成图表形式,形象鲜明地表现出题中各数量之间的关系,将文字语言、符号语言、图表语言转化成数学语言,这个过程其实就是建模。函数,数列,不等式,排列组合、概率是较为常见的模型,而三角,立几,解几等模型也时有出现.一般来说,可采用下列策略建立数学模型:(1)双向推理列式,利用已知条件顺向推理,运用所求结果进行逆向搜索;(2)借助常用模型直接列式,平均增长率的问题可建立指、对数或方程模型,行程、工程、浓度问题可以建立方程(组)或不等式模型,拱桥、炮弹发射、卫星制造问

3、题可建立二次模型,测量问题可建立解三角形模型;计数问题可建立排列组合问题;机会大小问题可建立概率模型,优化问题可建立线性规划模型……一、建构函数模型的应用性问题解答函数型应用题,一般先从建立函数的解析表达式入手,通过研究函数的性质获得解答.因此,这类问题的难点一般有两个:一是解析式的建立,二是数学知识的灵活应用.1.某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种

4、消费品的进价为每件40元;该店每月销售量q(百件)与销售价p(元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月13200元.(Ⅰ)若当销售价p为52元/件时,该店正好收支平衡,求该店的职工人数;(Ⅱ)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?2.某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率P与日产量x(件)之间大体满足关系:.注:次品

5、率,如表示每生产10件产品,约有1件为次品.其余为合格品.已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损元,故厂方希望定出合适的日产量.(Ⅰ)试将生产这种仪器每天的盈利额T(元)表示为日产量x(件)的函数;(Ⅱ)当日产量为多少时,可获得最大利润?3.某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)满足R(x)=.假定

6、该产品销售平衡,那么根据上述统计规律.(1)要使工厂有盈利,产品x应控制在什么范围?(2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少?4.为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为a米,高度为b米,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60平方米,问当a、b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?5.运输一批海鲜,可在汽车、火车、

7、飞机三种运输工具中选择,它们的速度分别为v千米/小时、2v千米/小时、10v千米/小时,每千米的运费分别为a元、b元、c元.且b<a<c,又这批海鲜在运输过程中的损耗为m元/小时,若使用三种运输工具分别运输时各自的总费用(运费与损耗之和)互不相等.试确定使用哪种运输工具总费用最省.(题中字母均为正的已知量)6.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位小时)的函数,记作y=f(t),下表是某日各时的浪高数据t03691215182124y1.51.00.51.01.4910.5

8、10.991.5经长期观测y=f(t)的曲线可近似地看成函数y=Acosωt+b.(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动.7.某外商到一开放区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.(1)若扣除投资及各种经费,则从第几年开始获取纯利润

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。