浙教版2018年中考数学难题突破专题七-图形变换综合探究题

浙教版2018年中考数学难题突破专题七-图形变换综合探究题

ID:6840525

大小:1.82 MB

页数:13页

时间:2018-01-27

浙教版2018年中考数学难题突破专题七-图形变换综合探究题_第1页
浙教版2018年中考数学难题突破专题七-图形变换综合探究题_第2页
浙教版2018年中考数学难题突破专题七-图形变换综合探究题_第3页
浙教版2018年中考数学难题突破专题七-图形变换综合探究题_第4页
浙教版2018年中考数学难题突破专题七-图形变换综合探究题_第5页
资源描述:

《浙教版2018年中考数学难题突破专题七-图形变换综合探究题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、浙教版2018年中考数学难题突破专题训练含答案难题突破专题七 图形变换综合探究题图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法.2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法.3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等.类型1 平移变换问题1两个三角板ABC,DEF按如图Z7-1所示的位置摆放,点B与点D重合,边AB与边

2、DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;图Z7-1(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.例题分层分析(1)当点C落在EF边上时

3、记为C′,此时A点的对应点记为A′,根据锐角三角函数,可得A′E=________cm,所以x=AA′=AE-A′E=______cm.(2)分类讨论:①当0≤x≤6时,根据三角形的面积公式可得答案;②当6<x≤12时,根据面积的和差可得答案;③当12<x≤15时,根据面积的和差可得答案.(3)根据点与直线上所有点的连线中垂线段最短,可得当NM⊥BD时,MN最小.根据线段的和差即可求得答案.浙教版2018年中考数学难题突破专题训练含答案类型2 折叠问题2[2015·衢州]如图Z7-2①,将矩形ABCD沿DE折叠使顶点A落在点A′处,然后将矩形展平

4、,沿EF折叠使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②.(1)求证EG=CH;(2)已知AF=,求AD和AB的长.图Z7-2例题分层分析(1)由折叠的性质及矩形的性质可知________=________=________,__________=________,再根据四边形ABCD是矩形,可得____________=________,等量代换即可证明EG=CH;(2)由折叠的性质可知∠ADE=________°,∠FGE=∠A=90°,AF=,那么DG=________,利用勾股定理求

5、出DF=________,于是可得AD=AF+DF=________;再利用AAS证明△AEF≌△BCE,得到____________,于是AB=AE+BE=________.解题方法点析折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决折叠问题要注意折叠前后对应点的位置;掌握辅助线的作法;折痕两边折叠部分是全等的;折叠的某点与所落位置之间线段被折痕垂直平分.类型3 旋转变换问题浙教版2018年中考数学难题突破专题训练含答案3[2016·成都]如图Z7-3①,△ABC中,∠ABC=45°,AH⊥BC

6、于点H,点D在AH上,且DH=CH,连结BD.图Z7-3(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连结AE.(ⅰ)如图②,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;(ⅱ)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连结GH,试探究线段GH与EF之间满足的等量关系,并说明理由.例题分层分析(1)先判断出AH=BH,再证明△BHD≌△AHC即可;(2)(ⅰ)在Rt△AHC中,tanC=________=3.由AH=BH及B

7、C=4可求得AH=________,CH=________,过点H作HP⊥AE于P,然后根据△EHA∽△FHC,得到HP=________AP,AE=________AP,最后用勾股定理求解即可;(ⅱ)设AH与CG交于点Q.先判断出△AGQ∽△CHQ,得到________,然后判断出△AQC∽△GQH,最后用相似比求解即可.浙教版2018年中考数学难题突破专题训练含答案专题训练1.[2017·菏泽]如图Z7-4,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠BAA′的度数是(  )A.55°B.60

8、°C.65°D.70°图Z7-4图Z7-52.[2017·舟山]如图Z7-5,在平面直角坐标系xOy中,已知点A(,0),B(1,1).

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。