导学案025平面向量的概念及线性运算

导学案025平面向量的概念及线性运算

ID:6592373

大小:228.00 KB

页数:5页

时间:2018-01-19

导学案025平面向量的概念及线性运算_第1页
导学案025平面向量的概念及线性运算_第2页
导学案025平面向量的概念及线性运算_第3页
导学案025平面向量的概念及线性运算_第4页
导学案025平面向量的概念及线性运算_第5页
资源描述:

《导学案025平面向量的概念及线性运算》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、济宁学院附属高中高三数学第一轮复习导学案编号024班级:高三()姓名:平面向量的概念及线性运算考纲要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.考情分析1.平面向量的线性运算是考查重点.2.共线向量定理的理解和应用是重点,也是难点.3.题型以选择题、填空题为主,常与解析几何相联系.教学过程基础梳理1.向量的有关概念(1)向量:既有又有的量叫向量;向量的大小叫做向量的(2)零向量:长度等

2、于的向量,其方向是任意的.(3)单位向量:长度等于的向量.(4)平行向量:方向或的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且相同的向量.(6)相反向量:长度相等且相反的向量.2.向量的线性运算向量运算定 义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)3.向量的数乘运算及其几何意义(1)定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作,它的长度与方向规定如下:①

3、λa

4、

5、=

6、λ

7、

8、a

9、;②当λ>0时,λa与a的方向;当λ<0时,λa与a的方向;当λ=0时,λa=0.(2)运算律:设λ,μ是两个实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.4.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得双基自测1.下列给出的命题正确的是(  )A.零向量是唯一没有方向的向量济宁学院附属高中高三数学第一轮复习导学案编号024班级:高三()姓名:B.平面内的单位向量有且仅有一个C.a与b是共线向量,b与c是平行向量,则a与c是方向相同的向量D.相等的向量必是共线向量2.如右图所示,向量a-b等于(  

10、)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e23.(教材习题改编)设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则下列关系式中正确的是(  )A.AD=BC        B.AD=2BCC.AD=-BCD.AD=-2BC4.化简:AB+DA+CD=________.5.已知a与b是两个不共线向量,且向量a+λb与-(b-3a)共线,则λ=________.典例分析考点一、平面向量的基本概念[例1] 给出下列命题:①两个具有共同终点的向量,一定是共线向量;②若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD为平行四边

11、形的充要条件;③若a与b同向,且

12、a

13、>

14、b

15、,则a>b;④λ,μ为实数,若λa=μb,则a与b共线.其中假命题的个数为(  )A.1           B.2C.3D.4变式1.设a0为单位向量,①若a为平面内的某个向量,则a=

16、a

17、a0;②若a与a0平行,则a=

18、a

19、a0;③若a与a0平行且

20、a

21、=1,则a=a0.上述命题中,假命题的个数是(  )A.0B.1C.2D.3涉及平面向量有关概念的命题的真假判断,准确把握概念是关键;掌握向量与数的区别,充分利用反例进行否定也是行之有效的方法.考点二、平面向量的线性运算[例2] (2011·四川高考)如图,正六边形ABCDEF中,BA

22、+CD+EF=(  )济宁学院附属高中高三数学第一轮复习导学案编号024班级:高三()姓名:A.0B.BEC.ADD.CF变式1本例条件不变,求AC+AF.变式2.(2012·杭州五校联考)设点M是线段BC的中点,点A在直线BC外,=16,

23、AB+AC

24、=

25、AB-AC

26、,则

27、AM

28、=(  )A.8B.4C.2D.11.进行向量运算时,要尽可能地将它们转化到平行四边形或三角形中,充分利用相等向量、相反向量、三角形的中位线定理、相似多边形对应边成比例等性质,把未知向量用已知向量表示出来.2.向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在

29、向量线性运算中同样适用.运用上述法则可简化运算考点三、共线向量[例3] (2012·南昌模拟)已知向量a,b不共线,c=ka+b(k∈R),d=a-b.如果c∥d,那么(  )A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向变式3.(2012·南通月考)设e1,e2是两个不共线向量,已知AB=2e1-8e2,CB=e1+3e2,CD=2e1-e2.(1)求证:A、B、D三点共线;(2)若BF=3e1-ke2,且B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。