导学案02平面向量的概念及线性运算.doc

导学案02平面向量的概念及线性运算.doc

ID:55821282

大小:211.50 KB

页数:5页

时间:2020-06-03

导学案02平面向量的概念及线性运算.doc_第1页
导学案02平面向量的概念及线性运算.doc_第2页
导学案02平面向量的概念及线性运算.doc_第3页
导学案02平面向量的概念及线性运算.doc_第4页
导学案02平面向量的概念及线性运算.doc_第5页
资源描述:

《导学案02平面向量的概念及线性运算.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、平面向量的概念及线性运算考纲要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.考情分析1.平面向量的线性运算是考查重点.2.共线向量定理的理解和应用是重点,也是难点.3.题型以选择题、填空题为主,常与解析几何相联系.教学过程基础梳理1.向量的有关概念(1)向量:既有又有的量叫向量;向量的大小叫做向量的(2)

2、零向量:长度等于的向量,其方向是任意的.(3)单位向量:长度等于的向量.(4)平行向量:方向或的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且相同的向量.(6)相反向量:长度相等且相反的向量.2.向量的线性运算向量运算定 义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)3.向量的数乘运算及其几何意义(1)

3、定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作,它的长度与方向规定如下:①

4、λa

5、=

6、λ

7、

8、a

9、;②当λ>0时,λa与a的方向;当λ<0时,λa与a的方向;当λ=0时,λa=0.(2)运算律:设λ,μ是两个实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.4.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得双基自测1.下列给出的命题正确的是(  )A.零向量是唯一没有方向的向量B.平面内的单位向量有且仅有一个C.a与b是共

10、线向量,b与c是平行向量,则a与c是方向相同的向量D.相等的向量必是共线向量2.如右图所示,向量a-b等于(  )A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e23.(教材习题改编)设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则下列关系式中正确的是(  )A.AD=BC        B.AD=2BCC.AD=-BCD.AD=-2BC4.化简:AB+DA+CD=________.5.已知a与b是两个不共线向量,且向量a+λb与-(b-3a)共线,

11、则λ=________.典例分析考点一、平面向量的基本概念[例1] 给出下列命题:①两个具有共同终点的向量,一定是共线向量;②若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD为平行四边形的充要条件;③若a与b同向,且

12、a

13、>

14、b

15、,则a>b;④λ,μ为实数,若λa=μb,则a与b共线.其中假命题的个数为(  )A.1           B.2C.3D.4变式1.设a0为单位向量,①若a为平面内的某个向量,则a=

16、a

17、a0;②若a与a0平行,则a=

18、a

19、a0;③若a与a0平行且

20、a

21、=1,

22、则a=a0.上述命题中,假命题的个数是(  )A.0B.1C.2D.3涉及平面向量有关概念的命题的真假判断,准确把握概念是关键;掌握向量与数的区别,充分利用反例进行否定也是行之有效的方法.考点二、平面向量的线性运算[例2] (2011·四川高考)如图,正六边形ABCDEF中,BA+CD+EF=(  )A.0B.BEC.ADD.CF变式1本例条件不变,求AC+AF.变式2.(2012·杭州五校联考)设点M是线段BC的中点,点A在直线BC外,=16,

23、AB+AC

24、=

25、AB-AC

26、,则

27、AM

28、=(  )A.

29、8B.4C.2D.11.进行向量运算时,要尽可能地将它们转化到平行四边形或三角形中,充分利用相等向量、相反向量、三角形的中位线定理、相似多边形对应边成比例等性质,把未知向量用已知向量表示出来.2.向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中同样适用.运用上述法则可简化运算考点三、共线向量[例3] (2012·南昌模拟)已知向量a,b不共线,c=ka+b(k∈R),d=a-b.如果c∥d,那么(  )A.k=1且c与d同向B.k=1且c

30、与d反向C.k=-1且c与d同向D.k=-1且c与d反向变式3.(2012·南通月考)设e1,e2是两个不共线向量,已知AB=2e1-8e2,CB=e1+3e2,CD=2e1-e2.(1)求证:A、B、D三点共线;(2)若BF=3e1-ke2,且B、D、F三点共线,求k的值.1.向量b与非零向量a共线的充要条件是存在唯一实数λ使b=λa.要注意通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.2.证明三点共线问题,可用向量共线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。