欢迎来到天天文库
浏览记录
ID:62455702
大小:2.27 MB
页数:26页
时间:2021-05-07
《 2021年新高考数学三轮冲刺训练:圆锥曲线中的基本量及性质的考查.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2021年新高考数学三轮冲刺训练:圆锥曲线中的基本量及性质的考查圆锥曲线中的基本量及性质的考查考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程·一、椭圆的标准方程和几何性质标准方程+=1(a>b>0)+=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴 对称中心:原点顶点A1(-a,0),A2
2、(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距F1F2=2c离心率e=∈(0,1)a,b,c的关系c2=a2-b2焦半径公式:称到焦点的距离为椭圆的焦半径①设椭圆上一点,则(可记为“左加右减”)②焦半径的最值:由焦半径公式可得:焦半径的最大值为,最小值为焦点三角形面积:(其中)一、双曲线的定义平面内与两个定点F1,F2的距离之差的绝对值等于非零常数(小于)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M=2a},=2c,其中a,c
3、为常数,且a>0,c>0.(1)当a<c时,点P的轨迹是双曲线;(2)当a=c时,点P的轨迹是两条射线;(3)当a>c时,点P不存在.二、双曲线的标准方程和几何性质标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈Ry≤-a或y≥a,x∈R对称性对称轴:坐标轴,对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±xy=±x离心率e= ,e∈(1,+∞)a,b,c的关系c2=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长=2a;线段B1B2叫做双曲线的虚轴,它的长=2b;a叫做双曲线的实半轴长,b叫
4、做双曲线的虚半轴长常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为,也叫通径.2、与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).3、双曲线的焦点到其渐近线的距离为b.4、若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则
5、PF1
6、min=a+c,
7、PF2
8、min=c-a.三、抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点FFFF离心率e=1准线方程x=-x=y=-y=范围x≥0,y∈Rx
9、≤0,y∈Ry≥0,x∈Ry≤0,x∈R开口方向向右向左向上向下焦半径公式:设抛物线的焦点为,,则焦点弦长:设过抛物线焦点的直线与抛物线交于,则(,再由焦半径公式即可得到)1、已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=A.2B.3C.6D.9【答案】C【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.2、设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为A.B.C.D.【答案】B【解析】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.3、
10、设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=A.1B.2C.4D.8【答案】A【解析】,,根据双曲线的定义可得,,即,,,,即,解得,故选:A.4、设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为A.B.C.D.【答案】D【解析】由题可知,抛物线的焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得.故选:.5、已知半径为1的圆经过点,则其圆心到原点的距离的最小值为A.4B.5C.6D.7【答案】A【解析】设
11、圆心,则,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当在线段上时取得等号,故选:A.6、若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2B.3C.4D.8【答案】D【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.7、双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.【答案】A【解析】由,又P在C的一条渐近线上,不妨设为在上,则,,故选A
此文档下载收益归作者所有