浅谈几个数学解题的模式.doc

浅谈几个数学解题的模式.doc

ID:62164826

大小:101.50 KB

页数:12页

时间:2021-04-20

浅谈几个数学解题的模式.doc_第1页
浅谈几个数学解题的模式.doc_第2页
浅谈几个数学解题的模式.doc_第3页
浅谈几个数学解题的模式.doc_第4页
浅谈几个数学解题的模式.doc_第5页
资源描述:

《浅谈几个数学解题的模式.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、淺談幾個數學解題的模式「解題」是數學中一個主要的活動,從小到大數學的學習活動,都脫離不了學習如何去解題,這一連串的課程主要是取材於George.Polya的<<如何解題>〉、<〈數學發現〉>、〈<數學與猜想>>這三部書,希望能介紹一些有用的策略與方法,讓讀者在學習數學的過程中,能有一些遵循的模式與法則。當然並不是所有的問題都能經由這些模式去解決,但是我們試圖舉出一些理性、有效率的建議,以提供讀者參考。(A)雙軌跡模式:模式的敘述:把問題簡化為作一個點,然後,把條件分為兩部分,使每一個部分變成未知點的一條軌跡;而每一條軌跡必須是一條直線或者是一

2、個圓.[例題1]已知一三角形ABC,求作此三角形的內切圓。簡化問題:已知:三角形的三個邊,AB,BC,CA。未知:一個點X。條件:X點到AB,BC,CA三邊的距離相等。做法:(1)將條件分成兩部分第一部份:X到AB,BC的距離相等Þ滿足第一條件的軌跡是兩條互相垂直的直線。(直線AB,BC的角平分線)第二部分:X到AB,CA的距離相等Þ滿足第一條件的軌跡是兩條互相垂直的直線.(直線AB,CA的角平分線)(2)滿足上述兩個條件的軌跡有四個交點,而X為其中一個。(練習1)三等份一給定三角形的面積,即在給定DABC內求一點X,使得DXAB、DXBC、

3、DXCA面積相等。簡化問題:已知:未知:條件:做法:(1)若從DXAB=DXBC出發,則X會落在若從DXBC=DXCA出發,則X會落在(2)若從DXAB=DABC出發,則X會落在若從DXBC=DABC出發,則X會落在由(1)(2)出發,可找到不一樣的做法嗎?PA(練習2)已知P為直線L上一點,A為L外一點,求作一圓通過A點且與L相切於P點.已知:未知:條件:作法:(B)相似形模式:模式的敘述:當我們一下子求不出欲求的圖形,考慮能否做出與所求圖形相似的圖形,藉此再求得所要的圖形.CBA[例題1]在一個給定的DABC中作一內接正方形,此正方形的兩

4、個頂點在AB上,一個在AC上,一個在BC上。已知:DABC未知:正方形條件:正方形的兩個頂點在AB上,一個在AC上,一個在BC上。做法:(1)減弱一個條件,正方形一個頂點不用落在BC上。(2)減弱條件之後,可做出多個相似的正方形.(3)觀察這些相似正方形的頂點,這些頂點共線。(4)所求的正方形,其頂點要在BC邊上,故此直線與的交點即為所求正方形的一個頂點,其餘個頂點,亦可順序做出來.(練習1)給定ÐACB,作一直線交CA於X點,CB於Y點,使得==。假設問題已知解決了!如圖.(1)作YZ//XA且YZ=XA.(2)AXYZ為菱形且DBYZ為等

5、腰三角形.(3)如果可做出Z,則可由Z求Y.雖然無法求出DBYZ,不過卻知道它的形狀,我們試著作一個與之相似的三角形。(1)我們不知道Y的位置,不過倒著作,先在上任取一點Y/,假設Y/是我們欲求的Y點,反過來去求類似Z點的Z/,即作直線Y/Z///CA,使得Y/Z/=Y/B。(2)Z/點取定之後,如何在上找一個類似A點的點A/呢?做法:(3)A/點取定之後,四邊形BYZA與BY/Z/A/是相似的圖形,如何由Z/點在去求Z點呢?做法:(練習1)給定一個三角形的三個高ha,hb,hc,求作此三角形。已知:未知條件:做法:(C)輔助圖形模式:模式的

6、敘述:設法發現圖形的一部份或與之密切相關的某個圖形,它是能否做出欲求的圖形的一塊踏腳石.我們應該注意尋找那些容易從所求的圖形中分出來的圖形,而且應該尋找極端情況,運用類比法或變化已知量等等,引出輔助圖形.[例題1]做兩個已知圓的公切線。已知量:兩個相離的圓.未知量:兩組公切線。做法:以外公切線為例(1)尋找輔助問題的方法¾變化已知量:即變化兩圓的半徑大小。找極端的情形:有一個圓變成一點.(2)當兩圓的半徑同時縮小,而有一圓縮成一個點時,想一想這樣變化的過程中,每一條外公切線都在移動著,但是整個移動過程,它們始終都是平行的。(3)將圓外一點作圓

7、的切線當作是輔助問題,根據(2)的結果,就可得出兩圓外公切線的做法。(練習1)給定一直線L,與線外兩點A,B,A,B兩點同側且不平行L,求作與直線L相切且通過A,B的圓.已知:直線L與線外同側的兩點A,B未知:圓條件:此圓與直線L相切且通過A,B兩點。做法:(1)輔助問題:給定不共線三點,就可決定一個圓。故我們想去尋找在L上圓的切點T。(2)假設圓已做成了,設P點為直線與直線AB的交點,根據切割線定理()2=×,我們可藉由來求T點的位置.(3)如何求出呢?以上我們列出了能用以處理幾何作圖問題的三種不同的模式。輔助圖形模式比起相似形模式來,給我

8、們以更多的選擇機會,但是他的目標不太確定。雙軌跡模式是最簡單的¾你可以首先試試看,因為在大多數情況下最好先從簡單的試起。但不要把自己束縛住,要保持開闊的思路:把問題

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。