欢迎来到天天文库
浏览记录
ID:62117684
大小:1.45 MB
页数:42页
时间:2021-04-17
《最新定点乘法运算(3定点乘法运算)(1)幻灯片.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、定点乘法运算(3定点乘法运算)(1)设n位被乘数和乘数用定点小数表示(定点整数也同样适用)被乘数[x]原=xf.xn-1…x1x0乘数[y]原=yf.yn-1…y1y0则乘积[z]原=(xf⊕yf)+(0.xn-1…x1x0)(0.yn-1…y1y0)式中,xf为被乘数符号,yf为乘数符号。2.3.3原码并行乘法2.乘法的手工算法(2)习惯方法求乘积的运算过程:设x=0.1101,y=0.10110.1101(x)0.1011(y)110111010000+11010.10001111(z)解:(1
2、)乘积符号的运算规则:同号相乘为正,异号相乘为负。2.3.3原码并行乘法2.3.3原码并行乘法令Ta为“与门”的传输延迟时间,Tf为全加器(FA)的进位传输延迟时间,假定用2级“与非”(2T)逻辑来实现FA的进位链功能,那么就有:Ta=Tf=2T阵列乘法器延迟时间2.3.3原码并行乘法BiCi&Ai&Ci+1&&ACiBiCiAiBiACiBiCiAiBiCi+1=++=2TC1C2C32T2T3T3TCn-1Cn2T3TS0S1S2Sn-1ta=(n-1)·2T+3T3T3TCiFASiCi+1A
3、iBiTm=Ta+(n-2)×6T+3T+Tf+(n-2)×Tf+3T=2T+(n-2)×6T+3T+2T+(n-2)×2T+3T=(8n-6)T最坏情况下延迟途径,即是沿着矩阵P4垂直线和最下面的一行。因而得n位×n位不带符号的阵列乘法器总的乘法时间为:[例16]已知两个不带符号的二进制整数A=11011,B=10101,求每一部分乘积项aibj的值与p9p8……p0的值。2.3.3原码并行乘法11011=A(2710)10101=B(2110)11011000001101100000+1101
4、11000110111=P[解:]a4b0=1a3b0=1a2b0=0a1b0=1a0b0=1a4b1=0a3b1=0a2b1=0a1b1=0a0b1=0a4b2=1a3b2=1a2b2=0a1b2=1a0b2=0a4b3=0a3b3=0a2b3=0a1b3=0a0b3=0a4b4=1a3b4=1a2b4=0a1b4=1a0b4=1P=p9p8p7p6p5p4p3p2p1p0=1000110111(56710)2.3.3原码并行乘法4.带符号的阵列乘法器(1)对2求补器电路例1:对1010求补。10
5、10——010110110例2:对1011求补。1011——010010101方法(变补):从数的最右端a0开始,由右向左,直到找出第一个“1”,例如ai=1,0≤i≤n。这样,ai以左的每一个输入位都求反,即1变0,0变1。2.3.3原码并行乘法1010011012.3.3原码并行乘法E=0则ai*=aiE=1则ai*=[ai]变补用这种对2求补器来转换一个(n+1)位带符号的数,所需的总时间延迟为:tTC=n·2T+5T=(2n+5)T其中每个扫描级需2T延迟,而5T则是由于“与”门和“异或”门
6、引起的。延迟时间:2.3.3原码并行乘法(2)带符号的阵列乘法器2.3.3原码并行乘法包括求补级的乘法器又称为符号求补的阵列乘法器。在这种逻辑结构中,共使用三个求补器:•两个算前求补器作用是:将两个操作数A和B在被不带符号的乘法阵列(核心部件)相乘以前,先变成正整数。•算后求补器作用则是:当两个输入操作数的符号不一致时,把运算结果变成带符号的数(补码)结构:2.3.3原码并行乘法设A=anan-1…a1a0和B=bnbn-1…b1b0均为用定点表示的(n+1)位带符号整数。在必要的求补操作以后,A和
7、B的码值输送给n×n位不带符号的阵列乘法器,并由此产生2n位的乘积:A·B=P=P2n-1…P1P0p2n=an⊕bn其中P2n为符号位。运算:2.3.3原码并行乘法带求补级的阵列乘法器用于原码乘法在原码乘法中,算前求补和算后求补都不需要,因为输入数据都是立即可用的。[例]设x=+15,y=-13,用带求补器的原码阵列乘法求出乘积x*y=?解:设最高位为符号位,输入数据为原码:[x]原=01111[y]原=11101因符号单独考虑,所以:
8、X
9、=1111,
10、y
11、=11012.3.3原码并行乘法111
12、1× 1101111100001111+ 111111000011符号位运算:01=1加上乘积符号位1,得:[x*y]原=111000011换算成二进制数真值是:X*Y=(-11000011)2=(-195)10十进制乘法验证:15*(-13)=-1952.3.3原码并行乘法带求补级的阵列乘法器用于补码乘法需使用求补器。[例]设x=15,y=-13,用带求补器的补码阵列乘法器求出乘积x*y=?并用十进制乘法进行验证。解:设最高位为符号位,输入数据用补码表示:[x
此文档下载收益归作者所有