欢迎来到天天文库
浏览记录
ID:61670204
大小:1.13 MB
页数:19页
时间:2021-03-06
《椭圆与直线的位置关系课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2椭圆的简单几何性质(三)1-----直线与椭圆的位置关系2-----弦长公式回忆:直线与圆的位置关系1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到二元一次方程组(1)△>0直线与圆相交有两个公共点;(2)△=0直线与圆相切有且只有一个公共点;(3)△<0直线与圆相离无公共点.通法直线与椭圆的位置关系种类:相离(没有交点)相切(一个交点)相交(二个交点)相离(没有交点)相切(一个交点)相交(二个交点)直线与椭圆的位置关系的判定mx2+nx+p=0(m≠0)Ax+By+C=0由方程组:<0方程组无解相离无交点=0方程组有一解相切一个交点
2、>0相交方程组有两解两个交点代数方法=n2-4mp1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到二元一次方程组(1)△>0直线与椭圆相交有两个公共点;(2)△=0直线与椭圆相切有且只有一个公共点;(3)△<0直线与椭圆相离无公共点.通法1直线与椭圆的位置关系例1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?例2.无论k为何值,直线y=kx+2和曲线交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点D1直线与椭圆的位置关系oxy1直线与椭圆的位置关系oxy思考:最大的距离是多少
3、?1直线与椭圆的位置关系练习:已知直线y=x-与椭圆x2+4y2=2,判断它们的位置关系。x2+4y2=2解:联立方程组消去y∆>0因为所以,方程(1)有两个根,那么,相交所得的弦的弦长是多少?则原方程组有两组解….-----(1)由韦达定理1直线与椭圆的位置关系设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.弦长公式:2弦长公式例:已知斜率为1的直线L过椭圆的右焦点,交椭圆于A,B两点,求弦AB之长.2弦长公式解:3.若P(x,y)满足,求的最大值、最小值.例:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.解:韦达定理→斜率
4、韦达定理法:利用韦达定理及中点坐标公式来构造弦中点问题例:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率.点作差弦中点问题例:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.所以x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0从而A,B在直线x+2y-4=0上而过A,B两点的直线有且只有一条解后反思:中点弦问题求解关键在于充分利用“中点”这一条件,灵活运用中点坐标公式及韦达定理,弦中点问题练习:1、如果椭圆被的弦被(4,2)平分,那么这弦所在直线方程为()A
5、、x-2y=0B、x+2y-4=0C、2x+3y-12=0D、x+2y-8=02、y=kx+1与椭圆恰有公共点,则m的范围()A、(0,1)B、(0,5)C、[1,5)∪(5,+∞)D、(1,+∞)3、过椭圆x2+2y2=4的左焦点作倾斜角为300的直线,则弦长
6、AB
7、=_______,DC1、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:弦长公式:
8、AB
9、==(适用于任何曲线)小结3、弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。1、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:弦长公式
10、:
11、AB
12、==(适用于任何曲线)小结作业P48练习7P49A组8B组2
此文档下载收益归作者所有