欢迎来到天天文库
浏览记录
ID:61575855
大小:204.50 KB
页数:14页
时间:2021-03-01
《切线的判定定理2)2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教版九年级上册图中直线l满足什么条件时是⊙O的切线?探究:Ol方法1:直线与圆有唯一公共点方法2:直线到圆心的距离等于半径注意:实际证明过程中,通常不采用第一种方法;方法2从“量化”的角度说明圆的切线的判定方法。(1)圆心O到直线l的距离和圆的半径有什么数量关系?(2)直线和圆位置有什么关系?为什么?(3)由此你发现了什么?O请在⊙O上任意取一点A,连接OA,过点A作直线l⊥OA。思考:lA操作与观察:(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径0A.则:直线l与⊙O相切这样我们就得到了从“位置”的角度圆的切线的判定方法—
2、—切线的判定定理.AOl发现:切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。对定理的理解:切线必须同时满足两条:①经过半径外端;②垂直于这条半径.AOl1、判断:(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()×××OrlAOrlAOrlA巩固:两个条件缺一不可OrlA∵OA是半径,l⊥OA于A∴l是⊙O的切线定理的数学语言表达:切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.即经过半径的外端并且
3、垂直这条半径的直线是圆的切线.判定直线与圆相切有哪些方法?归纳:例1如图,已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。OBAC分析:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可。例题:有交点,连半径,证垂直例2如图,已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。求证:⊙O与AC相切。OABCED无交点,作垂直,证d=rOBACOABCED归纳:例1与例2的证法有何不同?(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这
4、直线垂直.简记为:有交点,连半径,证垂直.(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:无交点,作垂直,证半径.2、(导学案第80页第3题)如图,△ABC中,AB=AC,AO⊥BC于O,OE⊥AC于E,以O为圆心,OE为半径作⊙O.求证:AB是⊙O的切线.FECOBA巩固:无交点,作垂直,证半径3、如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在⊙O上,∠CAB=30°.求证:DC是⊙O的切线.ABCDO有交点,连半径,证垂直小结:1、知识:切线的判定定理.着重分析了
5、定理成立的条件,在应用定理时,注重两个条件缺一不可.2、方法:判定一条直线是圆的切线的三种方法:(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.(3)根据切线的判定定理来判定.其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.
此文档下载收益归作者所有