欢迎来到天天文库
浏览记录
ID:61571018
大小:21.50 KB
页数:2页
时间:2021-03-01
《渗透模型思想的方法有.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、渗透模型思想的方法渗透模型思想的方法有:1、分析与综合。分析与综合是重要的思维方式,同样是重要的数学方法,是学习数学过程中建立数学模型的重要途径之一。分析是对所获得的数学材料或数学问题的构成要素进行研究,把握各要素在整体中的作用,找出其内在的联系与规律,从而得出有关要素的一般化的结论的思维方式。综合是将对数学材料、数学问题的分析结果和各要素的属性进行整合,以形成对该队象的本质属性的总体认识的思维方法。因而,分析与综合相结合,在建立起具有本质特征和方法论意义的数学模型上具有重要的意义。2、比较与分类。比较是对有关的数学知识或数学材料,辨别它们的共
2、同点与不同点。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,以便揭示其背后的共同模型。分类是在比较的基础上,按照事物间性质的异同,将具有相同性质的对象归入一类,不同性质的对象归入另一类的思维方法。因此,比较与分类常常是联系在一起的,在建立数学模型的诸多思维方法中,比较与分类有着重要的作用,它往往是抽象概括、合情推理的前提,而正确地进行比较与分类的基础是仔细、深入的观察。3、抽象与概括。抽象与概括是数学能力的核心要素之一,是形成概念、得出规律的关键性手段,因而,也是建立数学模型最为重要的思维方法。抽象是从许多数学事实或数学现
3、象中,舍去个别的、非本质的属性,而抽出共同的本质的属性。概括则是把抽象出来的事物间的共同特征,归结出来,它以抽象为基础,是抽象过程的进一步发展。4、猜想与验证。猜想是对研究的数学对象或数学问题进行观察、实验、比较、归纳等一系列的思维活动,依据已有的材料或知识经验,做出符合一定规律或是式的推测性想象。猜想是一种带有一定直觉性的比较高级的思维方式,对于探索和发现性学习来说,猜想是一种重要的思维方法。学生在验证过程中,会发现新的问题,并在解决新问题的过程中,完善自己的猜想,发挥创造才能,最终发现规律。这样一个学习过程可以概括为:“实践操作----提出
4、猜想----进行验证----自我反思----建立模型”,这不仅是一个主动学习的过程,更是发现学习、创新学习的过程。
此文档下载收益归作者所有