正弦定理和余弦定理导学案.doc

正弦定理和余弦定理导学案.doc

ID:61504259

大小:241.50 KB

页数:8页

时间:2021-02-07

正弦定理和余弦定理导学案.doc_第1页
正弦定理和余弦定理导学案.doc_第2页
正弦定理和余弦定理导学案.doc_第3页
正弦定理和余弦定理导学案.doc_第4页
正弦定理和余弦定理导学案.doc_第5页
资源描述:

《正弦定理和余弦定理导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、§4.6 正弦定理和余弦定理2014高考会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.1.正弦定理:===2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2Rsin_A,b=2Rsin_B,c

2、=2Rsin_C;(3)sinA=,sinB=,sinC=等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以变形:cosA=,cosB=,cosC=.3.S△ABC=absinC=bcsinA=acsinB==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=bsinAbsinAb解的个数一解两

3、解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB.2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1.在△ABC中,若A=60°,a=,则=________.2.(2012·福建)已知△ABC的三边长成公比为的等比数列,则其最大角的余弦值为________.3.(2012·重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且cosA=,

4、cosB=,b=3,则c=________.4.(2011·课标全国)在△ABC中,B=60°,AC=,则AB+2BC的最大值为________.5.已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc=16,则三角形的面积为(  )A.2B.8C.D.题型总结题型一 利用正弦定理解三角形例1 在△ABC中,a=,b=,B=45°.求角A、C和边c.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则角A的大小为________..题型二 利用余弦定理求解三角形例2 在△ABC中

5、,a、b、c分别是角A、B、C的对边,且=-.(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2+cosA=0.(1)求角A的值;(2)若a=2,b+c=4,求△ABC的面积.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC-b-c=0.(1)求A;(2)若a=2,△ABC的面积为,求b,c.在△ABC中,内角A,B,C所对的边长分别是a,b,c.

6、(1)若c=2,C=,且△ABC的面积为,求a,b的值;(2)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.代数化简或三角运算不当致误典例:(12分)在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),试判断△ABC的形状.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cosB的值;(2)边a,b,c成等比数列,求sinAsinC的值.方法与技巧1.应熟练掌握和运用内角和定理:A+B+C=π

7、,++=中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin2A=sin2B+sin2C-2sinB·sinC·cosA,可以进行化简或证明.失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2012·广东)在

8、△ABC中,若∠A=60°,∠B=45°,BC=3,则AC等于(  )A.4B.2C.D.2.(2011·浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.若acosA=bsinB,则sinAcosA+cos2B等于(  )A.-B.C.-1D.13.在△ABC中,a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。