相似三角形经典例题.doc

相似三角形经典例题.doc

ID:60838000

大小:60.00 KB

页数:4页

时间:2020-12-21

相似三角形经典例题.doc_第1页
相似三角形经典例题.doc_第2页
相似三角形经典例题.doc_第3页
相似三角形经典例题.doc_第4页
资源描述:

《相似三角形经典例题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、如何应用相似三角形证明比例式和乘积式例1、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE分析:证明乘积式通常是将乘积式变形为比例式及DF:FE=BC:AC,再利用相似三角形或平行线的性质进行证明:证明:过D点作DK∥AB,交BC于K,∵DK∥AB,∴DF:FE=BK:BE又∵AD=BE,∴DF:FE=BK:AD,而BK:AD=BC:AC即DF:FE=BC:AC,∴DFAC=BCFE例2:已知:如图,在△ABC中,∠BAC=900,M是BC的中点,DM⊥BC于点E,交BA的延长线于点D。求证:(1)MA2=MDME;(2)证

2、明:(1)∵∠BAC=900,M是BC的中点,∴MA=MC,∠1=∠C,∵DM⊥BC,∴∠C=∠D=900-∠B,∴∠1=∠D,∵∠2=∠2,∴△MAE∽△MDA,∴,∴MA2=MDME,(2)∵△MAE∽△MDA,∴,∴评注:(1)通过一对相似三角形来证明比例线段,是证比例线段的一种基本方法。本例第(1)小题证明MA2=MDME,经常可以把其中的MA看作一对相似三角形的公共边,再去寻觅与确定需证相似的三角形。(2)本例的关键是证明△MAE∽△MDA,这种具有特殊关系(有一个公共角和一条公共边)的三角形的相似,在解题中应用很多,应从下面两个方面深刻理解:命题1如图,如

3、果∠1=∠2,那么△ABD∽△ACB,AB2=ADAC。命题2如图,如果AB2=ADAC,那么△ABD∽△ACB,∠1=∠2。例3:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。分析:图中没有现成的相似形,也不能直接得到任何比例式,于是可以考虑作平行线构造相似形。怎样作?观察要证明的结论,紧紧扣住结论中“AE:ED”的特征,作DG∥BA交CF于G,得△AEF∽△DEG,。与结论相比较,显然问题转化为证。证明:过D点作DG∥AB交FC于G则△AEF∽△DEG。(平行于三角形一边的直线截其它两边或两边的延长线所得三

4、角形与原三角形相似)(1)∵D为BC的中点,且DG∥BF∴G为FC的中点则DG为△CBF的中位线,(2)将(2)代入(1)得:评注:(1)为了得到比例式,通常用过一点作某一直线的平行线的方法,在作平行线时必须注意紧扣与结论有关的线段。(2)在探索证题思路的过程中,我们可以采取“做做比比,比比做做”的方法,即构造相似形,写出比例式时要始终注意待证结论中的有关线段,并及时与待证结论中的有关线段进行比较,以便确定下一步需要解决什么问题。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。