资源描述:
《金迎迎线性代数电子教案first讲课稿.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、金迎迎线性代数电子教案first本次课[1]的教学要求1、熟练掌握二阶、三阶行列式的定义和对角线法则.2、理解全排列及其逆序数的概念,会求排列的逆序数.3、了解n阶行列式的第一种定义方法,会用定义计算特殊形式的n阶行列式.用消元法解二元线性方程组一、二阶行列式的引入第一章行列式第一节二阶与三阶行列式方程组的解为由方程组的四个系数确定.由四个数排成二行二列(横排称行、竖排称列)的数表定义即主对角线副对角线对角线法则二阶行列式的计算若记对于二元线性方程组系数行列式则二元线性方程组的解为注意分母都为原方程组的系数行列式.例1解二、三阶行列式定义
2、记(6)式称为数表(5)所确定的三阶行列式.列标行标对角线法则注意红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号.说明1对角线法则只适用于二阶与三阶行列式.如果三元线性方程组的系数行列式利用三阶行列式求解三元线性方程组三阶行列式包括3!项,每一项都是位于不同行,不同列的三个元素的乘积,其中三项为正,三项为负.若记或记即得得则三元线性方程组的解为:例2解按对角线法则,有例3解方程左端例4解线性方程组解由于方程组的系数行列式同理可得故方程组的解为:二阶和三阶行列式是由解二元和三元线性方程组引入的.对角线法则二阶与三阶行列式的计算三、小
3、结一、概念的引入引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数?解123123百位3种放法十位1231个位1232种放法1种放法种放法.共有第二节全排列及其逆序数二、全排列及其逆序数问题定义把个不同的元素排成一列,叫做这个元素的全排列(或排列).个不同的元素的所有排列的种数,通常用表示.由引例同理在一个排列中,若数则称这两个数组成一个逆序.例如排列32514中,定义我们规定各元素之间有一个标准次序,n个不同的自然数,规定由小到大为标准次序.排列的逆序数32514逆序逆序逆序定义一个排列中所有逆序的总数称为此排列的逆序数.例如
4、排列32514中,32514逆序数为31故此排列的逆序数为3+1+0+1+0=5.计算排列逆序数的方法方法1分别计算出排在前面比它大的数码之和即分别算出这个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数.逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列.排列的奇偶性分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数.方法2例1求排列32514的逆序数.解在排列32514中,3排在首位,逆序数为0;2的前面比2大的数只有一个3,故逆序数为1;325
5、14于是排列32514的逆序数为5的前面没有比5大的数,其逆序数为0;1的前面比1大的数有3个,故逆序数为3;4的前面比4大的数有1个,故逆序数为1;例2计算下列排列的逆序数,并讨论它们的奇偶性.解此排列为偶排列.解当时为偶排列;当时为奇排列.解当为偶数时,排列为偶排列,当为奇数时,排列为奇排列.2排列具有奇偶性.3计算排列逆序数常用的方法有2种.1个不同的元素的所有排列种数为三、小结一、概念的引入三阶行列式说明(1)三阶行列式共有项,即项.(2)每项都是位于不同行不同列的三个元素的乘积.第三节n阶行列式的定义(3)每项的正负号都取决于位
6、于不同行不同列的三个元素的下标排列.例如列标排列的逆序数为列标排列的逆序数为偶排列奇排列二、n阶行列式的定义定义说明1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的;2、阶行列式是项的代数和;3、阶行列式的每项都是位于不同行、不同列个元素的乘积;4、一阶行列式不要与绝对值记号相混淆;5、的符号为例1计算对角行列式分析展开式中项的一般形式是从而这个项为零,所以只能等于,同理可得解即行列式中不为零的项为例2计算上三角行列式分析展开式中项的一般形式是所以不为零的项只有解例3同理可得下三角行列式例4证明对
7、角行列式证明第一式是显然的,下面证第二式.若记则依行列式定义证毕1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的.2、阶行列式共有项,每项都是位于不同行、不同列的个元素的乘积,正负号由下标排列的逆序数决定.三、小结思考题2、分别用两种方法求排列16352487的逆序数.1、求一个二次多项式,使3、已知,思考题解答1、解设所求的二次多项式为由题意得得一个关于未知数的线性方程组,又得故所求多项式为2、解用方法116352487用方法2由前向后求每个数的逆序数.3、解含的项有两项,即对应于又作业习题一(
8、P26):1,2,3例设证明证由行列式定义有由于所以故此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢