a note on the real part of the riemann zeta-function

a note on the real part of the riemann zeta-function

ID:5989540

大小:117.07 KB

页数:7页

时间:2017-12-30

a note on the real part of the riemann zeta-function_第1页
a note on the real part of the riemann zeta-function_第2页
a note on the real part of the riemann zeta-function_第3页
a note on the real part of the riemann zeta-function_第4页
a note on the real part of the riemann zeta-function_第5页
资源描述:

《a note on the real part of the riemann zeta-function》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANOTEONTHEREALPARTOFTHERIEMANNZETA-FUNCTIONJUANARIASDEREYNA,RICHARDP.BRENT,ANDJANVANDELUNEDedicatedtoHermanJ.J.teRieleontheoccasionofhisretirementfromtheCWIinJanuary2012Abstract.WeconsidertherealpartReζ(s)oftheRiemannzeta-functionζ(s)inthehalf-planeRe(s

2、)≥1.Weshowhowtocom-puteaccuratelytheconstantσ0≈1.19whichisdefinedtobethesupremumofσsuchthatReζ(σ+it)canbenegative(orzero)forsomerealt.WealsoconsiderintervalswhereReζ(1+it)≤0andshowthattheyarerare.Thefirstoccursfort≈682112.9,andhaslength≈0.05.Welistthefirst

3、50suchintervals.1.IntroductionInthisnoteweconsidertherealpartoftheRiemannzeta-functionζ(s)inthehalf-planeH={s∈C

4、Re(s)≥1}.Asusual,wewrites=σ+it,soRe(s)=σ≥1.WearemainlyinterestedintheregionswhereReζ(s)≤0.Sincelimσ↑∞ζ(σ+it)=1(uniformlyint),Reζ(σ+it)cannotb

5、ezeroforarbitrarilylargeσ>1.Wedefineσ0:=sup{σ∈R

6、(∃t∈R)Reζ(σ+it)=0}.Thus,Reζ(s)>0ifσ>σ0.InvandeLune[9]itwasshownthatσ0isthe(unique)positiverealrootoftheequationX1πarcsin=,pσ2pwhereprunsthroughtheprimes(weadoptthisconventionthrough-arXiv:1112.4910v1[math

7、.NT]21Dec2011out).In[9]itwasalsoshownthatσ0>1.192andthatReζ(σ0+it)nevervanishes.Themainaimofthisnoteistoshowhowσ0canbecomputedtoarbitrarilyhighprecisionbyanefficientalgorithm.WealsomentionsomeresultsonthebehaviourofReζ(σ+it)for1≤σ<σ0,andinparticularonthel

8、ineσ=1.2.Accuratecomputationoftheconstantσ0Inthissectionweassumethatσ≥σ1>1,whereσ1isasuitableconstant(e.g.1.1).Weshowhowtheconstantσ0canbecomputedwithinagivenerrorbound.Therearethreemainsteps.1ONTHEREALPARTOFTHERIEMANNZETA-FUNCTION2(1)Giveanalgorithmtoe

9、valuatetheprimezeta-function[5]X−σP(σ)=p,pforrealσ>1.(2)Usingstep1,giveanalgorithmtoevaluatethefunctionf(σ)definedbyX1πf(σ)=arcsin−.pσ2p(3)Useasuitablezero-findingalgorithmtolocateazerooff(σ)ina(sufficientlysmall)intervalwheref(σ)changessign,forexample[1.

10、1,1.2].Step1iseasy.FromtheEulerproductforζ(σ)andM¨obiusinversion,wehaveaformulaessentiallyknowntoEuler[4,1748]:X∞µ(r)(1)P(σ)=logζ(rσ),rr=1whichisvalidforσ>1(seeTitchmarsh[13,eqn.(1.6.1)]).Theseriesconvergesrapidlyinviewofthefollo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。