a note on the fourth power moment of the riemann zeta-function

a note on the fourth power moment of the riemann zeta-function

ID:5989539

大小:115.28 KB

页数:5页

时间:2017-12-30

a note on the fourth power moment of the riemann zeta-function_第1页
a note on the fourth power moment of the riemann zeta-function_第2页
a note on the fourth power moment of the riemann zeta-function_第3页
a note on the fourth power moment of the riemann zeta-function_第4页
a note on the fourth power moment of the riemann zeta-function_第5页
资源描述:

《a note on the fourth power moment of the riemann zeta-function》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANOTEONTHEFOURTHPOWERMOMENTOFTHERIEMANNZETA-FUNCTIONJ.B.ConreyAbstract.WegiveexplicitformulaeforallofthetermsintheasymptoticexpansionofthemeanfourthpoweroftheRiemannzeta-functiononthecriticalline.Heath-Brownhasevaluatedthe4thpowermomentoftheRiemannzeta-functiononthecriticallineviatheformulaZTT

2、47=8+I(T)=j(1=2+it)jdt=TPlog+O(T)2420wherePisa4thdegreepolynomial.HerewegiveanexplicitformulaforP.In44particular,weshowthatthecoecientsofPareinthe eld4000Q(;;;;(2);(2);(2))0123wherethe'sarethecoecientsintheLaurentexpansion1(s)=++(s1)+:::01s1of(s)ats=1.Theorem.WehaveP(x)=g(x)+g(x)401w

3、heres42x(s+1)g(x)=Res0s=0s(s+1)(2s+2)and2112s20(xe)((s+1)(2s+1)(2s+2))d2sg(x)=:1ds(s+1)(s+2)s=0IvichasalsowrittendownformulaeforthecoecientsofP.4Proof.WerefertoHeath-Brown'spaper.ThereheshowsthatPisnaturally4expressedasasumofg+g.The rsttermgarisesfromthediagonalterms010Researchsupport

4、edinpartbyagrantfromtheNSF.TypesetbyAS-TXME12J.B.CONREYandisexactlyasabove.Theotherpiecearisesfromtheo diagonaltermsanditistheexplicitcalculationofthispartthatisthepurposeofthispaper.FollowingHeath-Brown,wewriteXd(n)d(n+r)=m(x;r)+E(x;r)nxwherem(x;r)=xisapolynomialofdegree2inxwithcoecientsdepen

5、dingonr.Infact,sxm(x;r)=ResD(s;r)s=1swith1Xd(n)d(n+r)D(r;s)=:snn=1ThenZ1T=(2)XT0g=2m(x;r)sin(Tr=x)dx:120r=1Lemma.Withtheabovenotation,1XX2(s)xm(x;r)=log+21+10222sdss=1djrand1XX2(s)x0m(x;r)=log+20222sdss=1djrProof.AccordingtoHeath-Brown,m(x;r)maybecalculatedbyconsideringthemaintermsi

6、nXX1=22R(x;q;r)R(qx;q;r)1=21=2qxqxwhere2XXxxR(x;q;r)=d(q=d)log+21:022qqdj(q;r)jq=dWritingq=sdwehaveXXXX1(s)x1R(x;q;r)=xlog+21:0222dsds1=21=21=2djrqxsx=dx=sdUsingX1=logy++O(1=y)0yANOTEONTHEFOURTHPOWERMOMENTOFTHERIEMANNZETA-FUNCTION3(andwenoteXlog12=logy+O(logy=y);12yf

7、orfuturereference)we ndthattheabovesumisXXx1(s)xx=log+21log+200222222dsdsds1=2djrsx=d01XX11=2@A+Ox:s1=2djrsxExtendingthesumoversto1theaboveis1XX(s)xx1=2=log+21log+2+O(xlogxd(r)):0022222sdsdss=1djrSimilarly,usin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。