the theory of riemann intergration

the theory of riemann intergration

ID:34667022

大小:907.74 KB

页数:23页

时间:2019-03-08

the theory of riemann intergration_第1页
the theory of riemann intergration_第2页
the theory of riemann intergration_第3页
the theory of riemann intergration_第4页
the theory of riemann intergration_第5页
资源描述:

《the theory of riemann intergration》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、September26,2000TheTheoryofRiemannIntegration11TheIntegralThroughtheworkoncalculus,particularlyintegration,anditsapplica-tionthroughoutthe18thcenturywasformidable,therewasnoactual“theory”forit.Theapplicationsofcalculustoproblemsofphysics,i.e.partialdifferentialequations,andthefl

2、edglingideasoffunctionrepresentationbytrigonometricseriesrequiredclarificationofjustwhatafunctionwas.Correspondingly,thischallengedthenotionthatanintegralisjustanantiderivative.Let’stracethisdevelopmentoftheintegralasaroughandreadywaytosolveproblemsofphysicstoafull-fledgedtheory

3、.Webeginthestorywithsequenceofevents..........1.LeonhardEuler(1707-1783)andJeand’Alembert(1717-1783)arguein1730-1750’soverthe“type”ofsolutionsthatshouldbeadmit-tedassolutionstothewaveequationuxy=0D’Alembertshowedthatasolutionmusthavetheform1F(x;t)=[f(x+t)+f(x¡t)]:2Fort=0wehaveth

4、einitialshapef(x).Note:Hereafunctionisjustthat.Thenewnotationanddesigna-tionarefixed.Butjustwhatkindsoffunctionsfcanbeadmitted?1°c2000,G.DonaldAllenTheRiemannIntegral22.D’Alembertarguedfmustbe“continuous”,i.e.givenbyasingleequation.Eulerarguedtherestrictiontobeunnecessaryandthat

5、fcouldbe“discontinuous”,i.e.itcouldbeformedofmanycurves.Inthemodernsensethoughbotharecontinuous.3.DanielBernoulli(1700-1782)enteredthefraybyannouncingthatsolutionsmustbeexpressibleinaseriesoftheformf(x)=a1sin(¼x=L)+a2sin(2¼x=L)+¢¢¢;whereListhelengthofthestring.Euler,d’Alembertan

6、dJosephLagrange(1736-1813)stronglyre-jectthis.4.Inthe19thcenturythenotionofarbitraryfunctionagaintookcenterstagewhenJosephFourier(1768-1830)presentedhiscelebratedpaper2onheatconductiontotheParisAcademy(1807).Initsmostgeneralform,Fourier’spropositionstates:Any(bounded)functionfde

7、finedon(¡a;a)canbeexpressedas1X1f(x)=a0+ancosn¼x=a+bnsinn¼x=a;2n=1where2Zaa0=f(x)dxa¡aZ1aan=f(x)cosn¼x=adx;a¡aZ1abn=f(x)sinn¼x=adx:a¡a5.ForFourierthenotionoffunctionwasrootedinthe18thcentury.Inspiteofthegeneralityofhisstatementsa“general”functionforhimwasstillcontinuousinthemode

8、rnsense.Forexample,hewouldcall8>:e

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。